

Zehnder ZBN

Technical document for radiant ceiling panels for heating and cooling

Delivering comfort, energy-saving in operation and flexibility

Zehnder ZBN radiant ceiling panels heat and cool a building comfortably and efficiently. They can be used in all rooms from approx 2 m - 50 m in height and compared to other systems, they can achieve energy savings of over 40%. Zehnder ZBN radiant ceiling panels are available in many different dimensions, with the exact length tailored to the building in question.

Special versions can also be manufactured.

ZEHNDER ZBN OFFERS THESE **SPECIAL FEATURES**

Due to high levels of energy efficiency and a customised design, Zehnder ZBN enables functional solutions for heating and cooling.

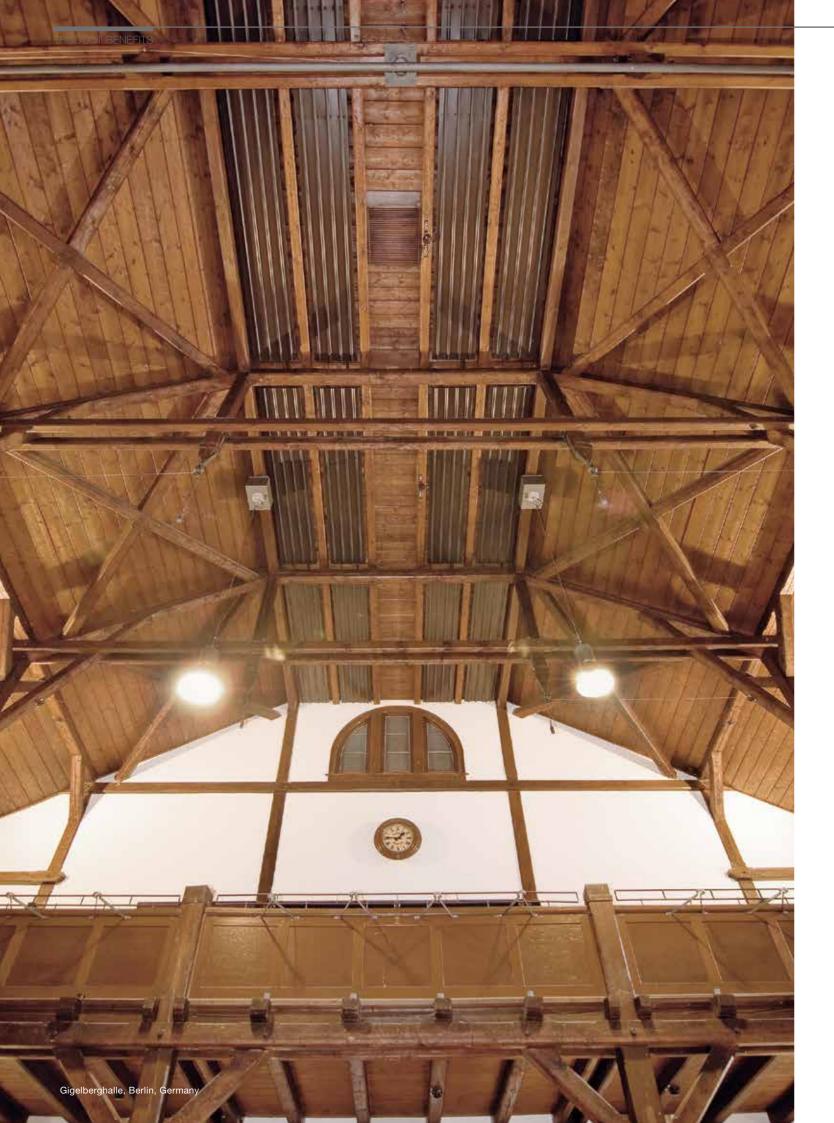
MOUNTING AND INSTALLATION

The installation stage is made easier due to flexible systems and professional support from Zehnder.

PAGE X-

TECHNICAL SPECIFICATIONS

W W ST WIN WAY


SEEFELD AUTOMOBILE AG

- Calculation of pressure loss and minimum mass flow
- Heating and cooling performance
- Technical specification

PAGE **X-X**

PAGE **X-X**

Product benefits

Zehnder ZBN radiant ceiling panels are a cost-effective, efficient, environmentally friendly and energy-saving heating and cooling alternative for buildings of any height. Here are the benefits at a glance.

Economic efficiency

- Possible energy savings of over 40%
- Air temperature may be up to 3 K lower (heating) or 3 K higher (cooling) than the perceived temperature
- Low temperature stratification
- Free choice of energy carrier
- No additional electricity costs for driving energy
- No maintenance or servicing costs
- High-performance radiant ceiling panels

Technology

- High heating and cooling performance (according to EN 14037 or based on EN 14240)
- Unrestricted use of floor and wall space
- Extremely quick system response to temperature changes
- Easy installation, cost savings up to 20% for individual element of 7.5 m
- Thermal insulation installed ex works

Comfortable climate

- Principle of radiant heat
- Uniform, comfortable heat distribution throughout the room
- Even temperature distribution across the entire height of building
- Heating and cooling effect immediately noticeable
- No dust dispersal
- The system runs absolutely silently

Variety of products

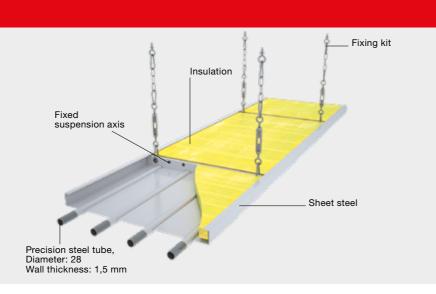
- Nine Zehnder ZBN standard models
 (2 to 10 pipes) with widths of 300 to 1,500 mm
- Length of strips up to approx. 120 m (sub-length up to 7.5 m)
- High-quality powder coating in any colour
- Special solutions tailored to customer requirements
- Perforated design for sound absorption

Structure and attachment

Zehnder stands for quality, functionality and design. The company is certified to ISO 9001 and 14001 and manufactures its products in accordance with the strictest quality guidelines. Zehnder ZBN radiant ceiling panels are produced and tested according to EN 14037 and therefore CE compliant.

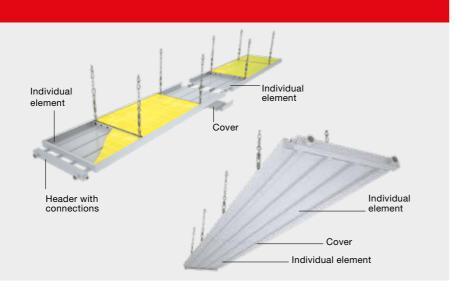
SURFACE FINISHES

Zehnder ZBN radiant ceiling panels are available with a smooth or a perforated surface. The surface is coated with a high-quality powder coat finish (standard colour RAL 9016 or any other colour of your choice).

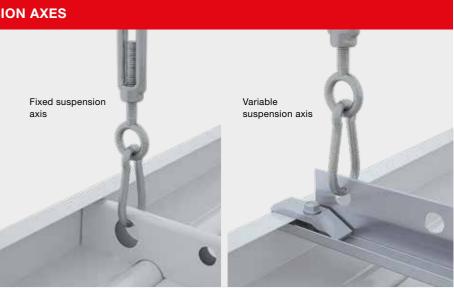

SUSPENSION AND ATTACHMENT

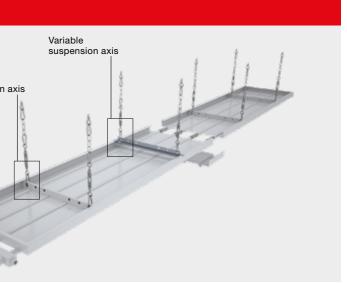
The Zehnder ZBN radiant ceiling panel can be attached to fixed or variable suspension axes. Additional suspension variants are available on request.

Fixed suspension axis

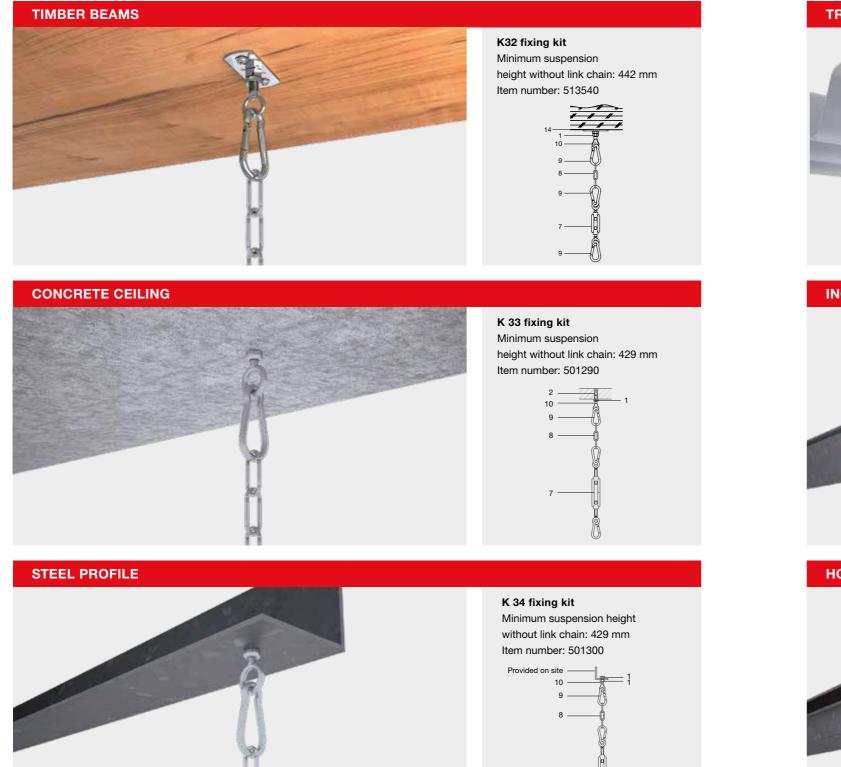

STRUCTURE OF THE ELEMENT

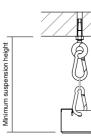
Zehnder ZBN radiant ceiling panels consist of a steel sheet with preformed channels into which the pipes are fitted. The insulation is fitted on the top of the panel at the factory. In the perforated design, insulation can be used which has special acoustic properties.


DESIGNS


The standard widths are 300, 450, 600, 750, 900, 1,050, 1,200, 1,350 and 1,500 mm. Other special sizes are also available on request. A radiant ceiling panel strip can consist of several individual elements arranged in series. The individual elements are produced in lengths of up to 7.5 m. This sub-length is unique within Europe and reduces installation costs by up to 20% compared to the standard sub-length of 6 m.

FIXED AND VARIABLE SUSPENSION AXES

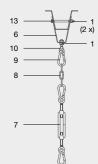

With fixed suspension axes, the fixing points are located at fixed positions on the panel and cannot be moved. Variable suspension axes can be moved along the length of the panel, enabling them to be adjusted to best suit the conditions of the building.



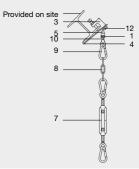
Standard fixing kits

There are five standard fixing kits for installing the radiant ceiling panels. In addition, Zehnder offers a number of customised solutions on request.

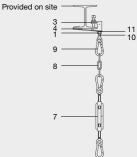
INCLINED STEEL GIRDER


HORIZONTAL STEEL GIRDER

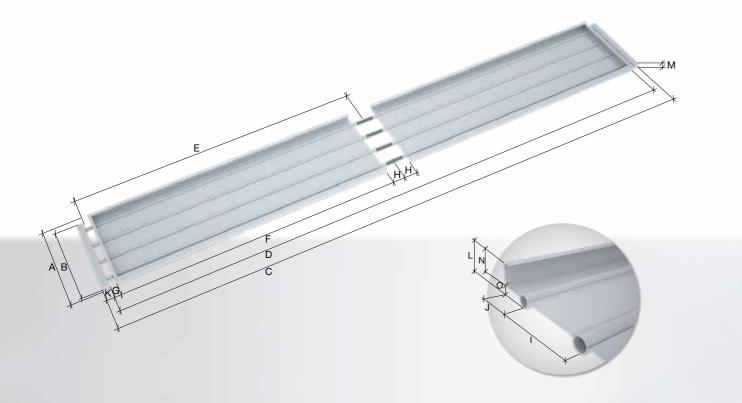
Кеу	Article number:
1 M10 hexagon nut	505080
2 M10 steel dowel	505060
3 M10 girder clamp	505030
4 Securing clip	506100
5 M10 flat leaf screw	959110
6 M10 trapezoidal hanger	505020
7 M8 x 110 turnbuckle	505140
8 4 mm link chain	509960
9 7 x 70 carabiner hook	505010
10 M10 eyelet screw	505040
11 M10 washer	959030
12 M10 x 40 hexagon screw	505070
13 M8 x 110 hexagon screw	501500
14 M10 turnbuckle	513510


K 36 fixing kit

Minimum suspension height without link chain: 471 mm Item number: 501310



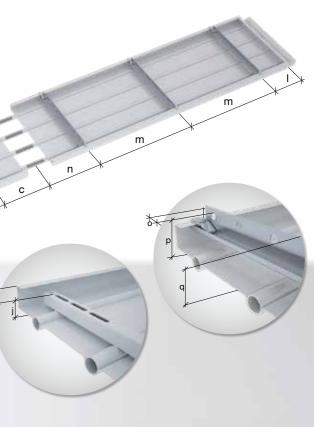
Minimum suspension height without link chain: 464 mm Item number: 504900



K 38 fixing kit

Minimum suspension height without link chain: 442 mm Item number: 504910

Dimensions



Item	Description	Dimension in mm	Min. dimension in mm	Max. dimension in mm	Note
Α	Overall width	Variable	300	1,500	Grid width 150 mm
в	Width of header	Variable	250	1,450	Grid width 150 mm
С	Overall length (without connections)	Variable	2,090	120,090	
D	Length of pipe	Variable	2,000	120,000	
Е	Length of individual element	Variable	2,000	7,500	
F	Radiant plate length of individual section	Variable	1,900	7,400	
G	Pipe projection from header	Variable	50	2,000	Standard 50 mm
н	Pipe projection from connection	Variable	100	2,000	Standard 100 mm
Т	Distance between two pipes	150	-	-	
J	Distance from pipe – side lip	75	-	-	
к	Length of header	45	-	-	
L	Overall height (without suspension)	69	-	-	
м	Height of header	45	-	-	
N	Height of side lip	50	-	-	
ο	Height of pipe beading	19	-	-	

	b
a	b tree

Fixing dimensions											
Item	Description	Dimension in mm	Min. dimension in mm	Max. dimension in mm	Note						
Fixed	axes panel type 300-900										
а	Header - centre of axis (fixed)	Variable	50	1,000	Standard dimension 500 mm						
b	Centre of axis (fixed) - centre of axis (fixed)	Variable	50	3,250	Standard dimension 3,250 mm						
с	Centre of axis (fixed) – joint	Variable	100	3,150	Standard dimension 800 mm						
d	Outer edge of module – centre of 1st suspension point	50	-	-							
е	Bottom edge of radiant plate - upper edge of suspension point	39	-	-							
Fixed	axes panel type 1,050-1,500										
а	Header – centre of axis (fixed)	Variable	50	1,000	Standard dimension 500 mm						
b	Centre of axis (fixed) - centre of axis (fixed)	Variable	50	3,250	Standard dimension 3,250 mm						
с	Centre of axis (fixed) – joint	Variable	100	3,150	Standard dimension 800 mm						
i	Outer edge of module – centre of 1st suspension point	50	-	-							
j	Bottom edge of radiant plate - upper edge of suspension point	35	-	-							
Mova	ble axes panel type 300-1,500										
Т	Header – centre of axis (movable)	Variable	90	750							
m	Centre of axis (movable) - centre of axis (movable)	Variable	60	3,000							
n	Centre of axis (movable) - joint	Variable	190	2,810							
o	Outer edge of module – centre of 1st suspension point	50	-	-							
р	Bottom edge of radiant plate - upper edge of suspension point	74	-	-	from width 1,050; 77 mm						
q	Bottom edge of radiant plate - upper edge of suspension axis	82	_	_	from width 1,050; 94 mm						

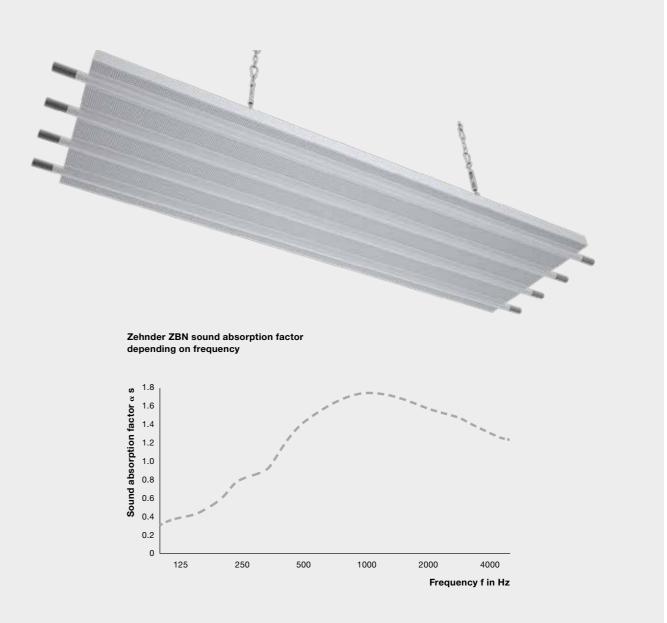
Connector technology

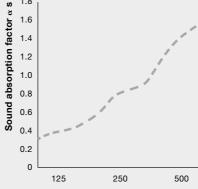
If you are using two or more individual elements, they will need to be connected to one another, with the pipes joined in one of two different ways. The individual elements are assembled into the desired configuration by means of press-fit or welded connections and the joints are then hidden under a cover. So all you see is great design!

Sound absorption

In addition to their heating and cooling effect, perforated Zehnder ZBN radiant ceiling panels can also be used for sound absorption: the sound waves pass through the perforated surface of the radiant panel sheet into the thermal insulation within, where they are absorbed. This results in a significant reduction of the noise level or a reduction in the reverberation time (in gyms and sports halls, for example). Detailed information for calculating acoustics is available on request.

PRESS-FIT CONNECTION


An exclusive programme has been developed to ensure press fittings can be used reliably. Zehnder uses this programme to check the configuration of the radiant ceiling panels to be installed and supplies the appropriate press fittings, thus guaranteeing that the system will remain permanently leak-tight.



WELDED CONNECTION

The welded connection can be used universally and is suitable for all temperatures, strip widths and lengths, and all types of hydraulic connection. The pipes are buttjointed and welded from both edges towards the centre.

TECHNICAL SPECIFICATIONS

Dimensions, operating parameters and output

Zehnder ZBN	Unit of measurement	t								
Туре		300/2	450/3	600/4	750/5	900/6	1,050/7	1,200/8	1,350/9	1,500/10
Dimensions										
Widths	mm	300	450	600	750	900	1,050	1,200	1,350	1,500
Number of pipes	piece(s)	2	3	4	5	6	7	8	9	10
Pipe material/dimension (exterior $\ensuremath{\mathcal{O}}$ x pipe thickness)	- / mm				Precision	steel tube	e / 28 x 1.5	5		
Panel material	-					Steel				
Tube spacing	mm					150				
Length of individual element, min.	mm					2,000				
Length of individual element, max.	mm					7,500				
Suspension points per axis	piece(s)	2	2	2	2	2	2	2	3	3
Distance between suspension points (A) ¹⁾	mm	200	350	500	650	800	950	1,100	625	700
Operating parameters										

Max. operating temperature ²⁾	°C	120
Max. operating pressure ³⁾	bar	10

Weights 9.67 12.42 15.14 17.86 22.08 24.83 Radiant panel Kg/m 6.95 27.56 30.28 Empty weight without water content, with insulation Per manifold Kg 1 1.5 2 2.5 3 3.5 4 4.5 5 Weight of insulation 0.3 0.6 1.05 1.2 Kg/m 0.45 0.75 0.9 1.35 1.5 Water content l/m 0.982 1.473 1.964 2.455 2.946 3.437 3.928 4.419 4.91 Radiant panel Kg/m 7.94 11.14 14.38 17.59 20.8 25.52 28.76 31.97 35.18 Operating weight with water and insulation Per manifold Kg 1.5 2.2 3 3.7 4.5 5.2 6 6.7 7.4 Weight of ball guards Kg/m 0.29 0.42 0.55 0.68 0.81 0.94 1.67 2.92 3.22 Weight of dust protector panel 1.50 2.25 3.00 3.75 4.50 5.25 6.00 6.75 7.50 Heat output Thermal output according to EN 14037-2 at $\Delta T = 55$ K W/m 199 270 342 425 507 590 672 738 804 with upper insulation Thermal output constant (K) 1.787 2.421 3.055 3.798 4.540 5.283 6.029 6.561 7.087 _

Cooling capacity										
Cooling capacity based on EN 14240 at ΔT = 10 K with upper insulation	W/m	32	45	57	73	90	106	122	133	143
Cooling capacity constant (K)	-	2.683	3.695	4.707	6.056	7.405	8.753	10.102	10.946	11.791
Cooling capacity exponent (n)	-	1.083	1.083	1.083	1.083	1.083	1.083	1.083	1.083	1.083

1.176 1.177 1.177 1.177 1.177 1.177 1.176 1.179 1.181

Thermal output exponent (n)

³⁾ Higher operating pressure on request.

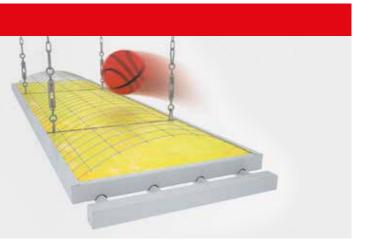
Special solutions

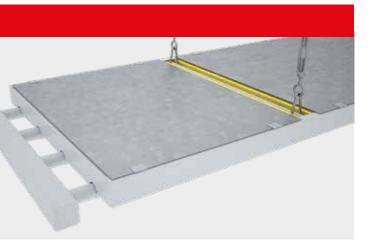
Zehnder ZBN radiant ceiling panels are extremely flexible: in addition to the wide standard range, there are also a number of special solutions available. Therefore, whatever the room and whatever the project, we have exactly what you need.

INTEGRATED LIGHTS, ETC.

Cut-outs can be provided in the radiant panels to accommodate various components, such as LED light fixtures, fire alarms, loudspeakers, etc.

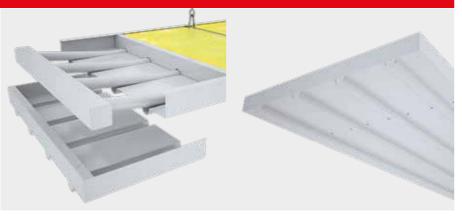
1	-	
		-
	-	-
	-	_


BALL GUARDS


Practical in sports halls: Due to the arched, galvanised grid, no "stray" shots get caught in the radiant ceiling panels. Furthermore, Zehnder ZBN radiant ceiling panels have successfully passed testing for ball impact resistance to DIN 18032 by the Stuttgart Materials Testing Institute.

DUST PROTECTOR PANEL

Zehnder ZBN radiant ceiling panels can be sealed with a dust protector panel as required. An easy-care and equally hygienic solution that is ideal for rooms with high dust levels.



RAISED HEADERS WITH END COVER

The headers are hidden behind a cover. So all you see is great design!

NON-CONTINUOUS RADIANT PANEL PLATE

This version allows light to pass through unobstructed, for example, from skylights. This special solution was designed by Zehnder's internal planning department.

MITRE CUTS

Zehnder ZBN radiant ceiling panels are also available in angled versions or with mitre cuts, whether you want them to fit in with the room's existing design or to make a statement all of their own.

Heating and cooling performance

The following tables show the Zehnder ZBN heating and cooling performance depending on the excess temperature and under temperature. The heat output values have been measured according to EN 14037-2. The radiant ceiling panel Zehnder ZBN has a proportion of radiation of up to 81%, depending on its configuration. The measurement results for the cooling capacity are based on EN 14240.

Note: The removal of the insulation has a positive effect on the cooling capacity (see table). However, this additional output can only be attributed to the room if it has an open ceiling. Removing the insulation increases the thermal output, but only leads to a build-up of heat under the ceiling.

Coolin	Cooling output without insulation													
	Zehnder ZBN													
	300/2	450/3	600/4	750/5	900/6	1,050/7	1,200/8	1,350/9	1,500/10					
K n	3.131 1.083	4.513 1.083	5.896 1.083	7.259 1.083	8.622 1.083	9.985 1.083	11.348 1.083	12.740 1.083	14.132 1.083					
ΔT _{low} (K)	W/m	W/m	W/m	W/m	W/m	W/m	W/m	W/m	W/m					
15	59	85	111	136	162	188	213	239	265					
14	55	79	103	127	150	174	198	222	246					
13	50	73	95	117	139	161	183	205	227					
12	46	67	87	107	127	147	167	188	208					
11	42	61	79	97	116	134	152	171	190					
10	38	55	71	88	104	121	137	154	171					
9	34	49	64	78	93	108	123	138	153					
8	30	43	56	69	82	95	108	121	134					
7	26	37	49	60	71	82	93	105	116					
6	22	31	41	51	60	70	79	89	98					
5	18	26	34	41	49	57	65	73	81					

Coolin	Cooling output with insulation													
	Zehnder ZBN													
	300/2	450/3	600/4	750/5	900/6	1,050/7	1,200/8	1,350/9	1,500/10					
K n	2.683 1.083	3.695 1.083	4.707 1.083	6.056 1.083	7.405 1.083	8.753 1.083	10.102 1.083	10.946 1.083	11.791 1.083					
ΔT _{low} (K)	W/m	W/m	W/m	W/m	W/m	W/m	W/m	W/m	W/m					
15	50	69	88	114	139	164	190	206	221					
14	47	64	82	106	129	153	176	191	205					
13	43	59	76	97	119	141	162	176	190					
12	40	54	69	89	109	129	149	161	174					
11	36	50	63	81	99	117	136	147	158					
10	32	45	57	73	90	106	122	133	143					
9	29	40	51	65	80	95	109	118	127					
8	26	35	45	58	70	83	96	104	112					
7	22	30	39	50	61	72	83	90	97					
6	19	26	33	42	52	61	70	76	82					
5	15	21	27	35	42	50	58	63	67					

Output $\dot{Q} = K \cdot \Delta T^{n}$

The excess and under temperature can be calculated arithmetically:

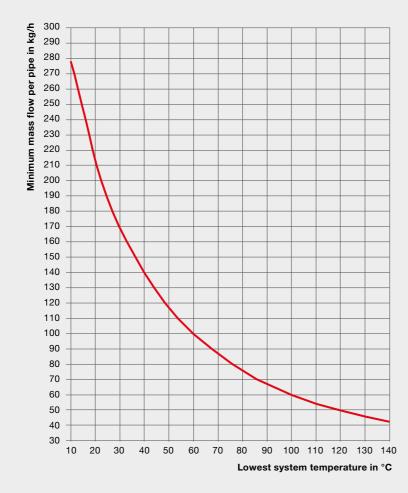
 $t_i = t_p = \frac{(t_{sur} + t_{air})}{2}$ $\Delta T_{exc} = \frac{(t_{hf} + t_{hr})}{2} - t_i$ $\Delta T_{low} = t_i \frac{(t_{cf} + t_{cr})}{2}$

Legen	ıd
t _{air}	Air temperature (°C)
t _{amb}	Ambient temperature (°C)
	= average surface temperature
	of all surfaces in the surrounding
	area (°C)
t _i = t _p	Indoor temperature (°C)
	= perceived temperature (°C)
t _{hf}	Heating flow temperature (°C)
t _{hr}	Heating return temperature (°C)
t _{cf}	Cooling flow temperature (°C)
t _{cr}	Cooling return temperature (°C)
ΔT_{exc}	Excess temperature (K)
ΔT_{low}	Under temperature (K)
К	Constant
n	Exponent
ġ	Output
Qg	Total thermal output
S	Inclination correction factor
Dhuai	a d unita
-	cal units
•	e centigrade (°C)
Kelvin	
	metre (m3)
Metre	
	etre (mm)
Dacaa	

Pascal (Pa) Kilogram (kg)

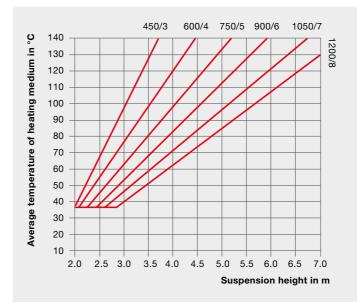
C)			

								Ze	ehnder	ZBN								
		00/2		450/3	6	00/4	7	50/5		00/6		050/7	1,	200/8	1,	350/9	1,5	00/10
К	1.787	0.726	2.421	1.223	3.055	1.845	3.798	2.184	4.540	2.461	5.283	2.682	6.026	2.856	6.561	2.747	7.087	3.199
n T _{exc} (K)	1.176 W/m	1.199 W/ manifold pair	1.177 W/m	1.167 W/ manifold pair	1.177 W/m	1.134 W/ manifold pair	1.177 W/m	1.154 W/ manifold pair	1.177 W/m	1.174 W/ manifold pair	1.177 W/m	1.194 W/ manifold pair	1.176 W/m	1.213 W/ manifold pair	1.179 W/m	1.240 W/ manifold pair	1.181 W/m	1.219 W/ manifol pair
120	498	226	677	326	856	420	1,063	548	1,270	678	1,477	813	1,683	952	1,851	1,040	2,020	1,093
118	488	222	663	320	839	413	1,043	537	1,245	665	1,448	797	1,650	933	1,815	1,019	1,980	1,070
116	479	217	650	313	823	405	1,022	527	1,221	652	1,419	781	1,617	914	1,779	998	1,941	1,048
114	469	213	637	307	806	397	1,001	516	1,196	639	1,390	765	1,584	895	1,743	976	1,901	1,026
112	459	208	624	301	789	389	980	506	1,171	626	1,361	749	1,551	876	1,707	955	1,862	1,004
110 108	450 440	204 199	611 598	295 288	773 756	381 373	960 939	495 485	1,147 1,122	612 599	1,333 1,304	733 717	1,519 1,486	857 838	1,671 1,635	934 913	1,823 1,784	983 961
106	430	195	585	282	740	365	919	475	1,098	586	1,276	701	1,454	819	1,599	892	1,745	939
104	421	191	572	276	723	358	899		1,073	573	1,248	686	1,422	800	1,564	871	1,706	918
102	411	186	559	270	707	350	878	454	1,049	560	1,220	670	1,390	782	1,529	851	1,667	896
100	402	182	546	264	691	342	858	444	1,025	548	1,191	654	1,358	763	1,493	830	1,629	875
98	392	177	533	257	675	334	838	433	1,001	535	1,163	639	1,326	745	1,458	809	1,590	854
96	383	173	520	251	658	326	818	423	977	522	1,136	623	1,294	726	1,423	789	1,552	832
94	374	169	508	245	642	319	798	413	953	509	1,108	608	1,262	708	1,388	769	1,514	811
92	364	164	495	239	626	311	778	403	929	497	1,080	592	1,231	690	1,354	748	1,476	790
90	355	160	482	233	610	303	758	393	905	484	1,053	577	1,199	671	1,319	728	1,438	770
88	346	156	470	227	594	296	738	383	882	471	1,025	562	1,168	653	1,284	708	1,400	749
86	337	152	457	221	578	288	718	373	858	459	998	546	1,137	635	1,250	688	1,363	728
84	327	147	445	215	563	281	699	363	835	446	970	531	1,106	618	1,216	669	1,326	707
82	318	143	432	209	547	273	679	353	811	434	943	516	1,075	600	1,182	649	1,288	687
80	309	139	420	203	531	266	660	343	788	421	916	501	1,044	582	1,148	629	1,251	667
78	300	135	408	197	516	258	640	333	765	409	889	486	1,014	564	1,114	610	1,215	646
76	291	131	395	191	500	251	621	323	742	397	863	471	983	547	1,081	590	1,178	626
74	282	127	383	185	485	243	602	313	719	385	836	457	953	530	1,047	571	1,141	606
72	273 264	123 119	371 359	180 174	469 454	236 228	583 564	304 294	696 674	372 360	810 783	442 427	923 892	512 495	1,014 981	552 533	1,105	586
70 68	264 255	119	359 347	174	454 439	220	545	294 284	651	360	763	427	892 863	495 478	981 948	533 514	1,069 1,033	567 547
66	247	110	335	162	424	213	526	275	629	336	731	398	833	461	915	496	997	527
64	238	106	323	157	409	206	507	265	606	324	705	384	803	444	882	477	962	508
62	229	102	311	151	394	199	489	256	584	312	679	370	774	427	850	459	926	489
60	220	98.5	299	145	379	192	470	246	562	301	653	356	744	411	818	440	891	470
58	212	94.6	288	140	364	184	452	237	540	289	628	341	715	394	786	422	856	451
56	203	90.7	276	134	349	177	434	227	518	277	602	327	686	378	754	404	821	432
55	199	88.7	270	131	342	174	425	223	507	271	590	320	672	369	738	395	804	422
54	195	86.8	264	128	334	170	415	218	496	266	577	314	658	361	722	387	787	413
52	186	83.0	253	123	320	163	397	209	475	254	552	300	629	345	691	369	753	394
50	178	79.2	242	117	305	156	379	199	453	243	527	286	601	329	660	351	718	376
48	170	75.4	230	112	291	149	362	190	432	231	502	272	573	313	629	334	685	358
46	161	71.6	219	107	277	142	344	181	411	220	478	259	545	297	598	317	651	340
44	153	67.9	208	101	263	135	326	172	390	209	453	246	517	282	567	300	618	322
42	145	64.2	197	95.8	249	128	309	163	369	198	429	232	489	266	537	283	585	304
40	137	60.6	186	90.5	235	121	292	154	349	187	405	219	462	251	507	266	552	286
38	129	57.0	175	85.2	221	114	275	145	328	176	382	206	435	236	477	250	520	269
36	121	53.4	164	80.0	208	107	258	136	308	165	358	193	408	221	448	234	487	252
34	113	49.8	153	74.9	194	101	241	128	288	154	335	181	382	206	419	218	456	235
32	105	46.4	143	69.7	181	93.9	224	119	268	144	312	168	355	191	390	202	424	218
30	97.5	42.9	132	64.7	167	87.3	208	111	249	133	289	155	329	177	361	186	393	202
28	89.9	39.5	122	59.7	154	80.7	192	102	229	123	266	143	304	163	333	171	362	185
26 24	82.4 75.0	36.1 32.8	112 102	54.7 49.9	141 129	74.2 67.8	176	93.8 85.5	210 191	113	244 222	131 119	278 253	149 135	305 278	156 141	332 302	169 154
24 22	75.0 67.7	32.8 29.6		49.9 45.0	129		160	85.5		103 92.6	222	107	253 229	135	278	141	302 273	154
22	60.5	29.6	91.9 82.2	45.0	104	61.4 55.1	144 129	77.3 69.3	173 154	92.6 82.8	179	95.8	229	108	251 224	113	273	138 123


Minimum mass flow

To maintain the output shown in the table, a turbulent flow must be ensured within the pipes in the panels. This minimum mass flow depends on the lowest system temperature. When heating, this corresponds to the return temperature. When cooling or in a combined cooling/heating mode, this corresponds to the cold water flow temperature. If the minimum mass flow per pipe is not achieved, this can result in a drop in performance of around 15%.

Temperature limits


The right design temperature must be selected in order to ensure the radiant ceiling system delivers a comfortable climate throughout the room. You can use the following table and graph to check this design temperature, which must be lower than the two temperature limits (average temperature of heating medium). Higher temperature limits can be used for rooms and corridors where people do not spend a great deal of time. These values are only intended as a guide. A detailed calculation can be performed according to ISO 7730.

Minimum mass flow

Temperature limits						
Height	Proportion	of the ceiling s	urface covered	l by Zehnder 2	ZBN radiant cei	iling panels
m	10%	15%	20%	25%	30%	35%
		Average	temperature of	heating med	ium in °C	
≤ 3	73	71	68	64	58	56
4	115	105	91	78	67	60
5	>147	123	100	83	71	64
6		132	104	87	75	69
7		137	108	91	80	74
8		>141	112	96	86	80
9			117	101	92	87
10			122	107	98	94

Step 1: Ceiling coverage. The design temperature must not exceed the defined thresholds.

Step 2: Width of the radiant panel. The design temperature must not exceed the defined thresholds.

Ball impact resistance

The stability of the radiant ceiling panels is particularly important when they are used in sports halls, where they could be accidentally hit by balls, for example. This is why Zehnder ZBN radiant ceiling panels have been tested for ball impact resistance in accordance with DIN 18032, Part 3. The test was performed by the Stuttgart Materials Testing Institute.

Connection options

Asymmetrical and symmetrical connections

With freely suspended strips, an asymmetrical water connection can be used. If the system is being installed in a suspended ceiling, a symmetrical connection is advisable in order to ensure even expansion.

Same-end or opposite-end connection

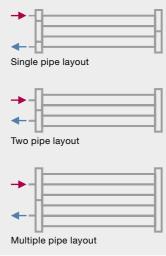
日

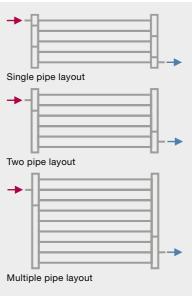
The position of the connection is usually determined by the conditions of the particular building.

connection

-end

Same


connection


-end

Opposite-

parallel

strip.

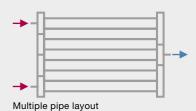
Alexander-von-Humboldt secondary school sports hall, Schweinfurt, Germany

Varying number of pipes laid in

The number of pipes depends on the minimum mass flow required for the

Asymmetrical connection

Symmetrical connection



Two pipe layout

Multiple pipe layout

Layout basics

The heat load of the room is calculated according to the applicable standard. If the transmission heat loss through the roof is over 30% of the total heat load, this indicates that significant heat loss is occurring in the ceiling area. If the roof's insulation cannot be improved, the thermal insulation on top of the radiant ceiling panels can be removed proportionately instead, thus compensating for the considerable amount of transmission heat loss through the roof. If the air exchange rate of a room is above the usual level achieved with gap ventilation (max. 1/h), particularly with extraction systems, the air fed into the room must be pre-heated. Radiant heating systems alone cannot prevent infiltration of cold air at doors or loading areas. Strip curtains or air curtains, for example, must be used to help rectify this situation.

Thermal output calculation							
Length in m	Excess temperature in K	Output in W/m	Output in W/ manifold pair	Quantity	Total thermal output in W		
12.5	55	507	271	4	26,434		
45	55	507	271	4	92,344		
45	55	270	131	4	49,124		
45	55	199	88.7	2	18,087		
	Length in m 12.5 45 45	Length in mExcess temperature in K12.55545554555	Length in mExcess temperature in KOutput in W/m12.555507455550745552704555270	Length in m temperature in KExcess temperature in KOutput in W/manifold pair12.55550727145555072714555270131	Length in m temperature in KExcess temperature in KOutput in W/m manifold pairQuantity Quantity12.55550727144555507271445552701314		

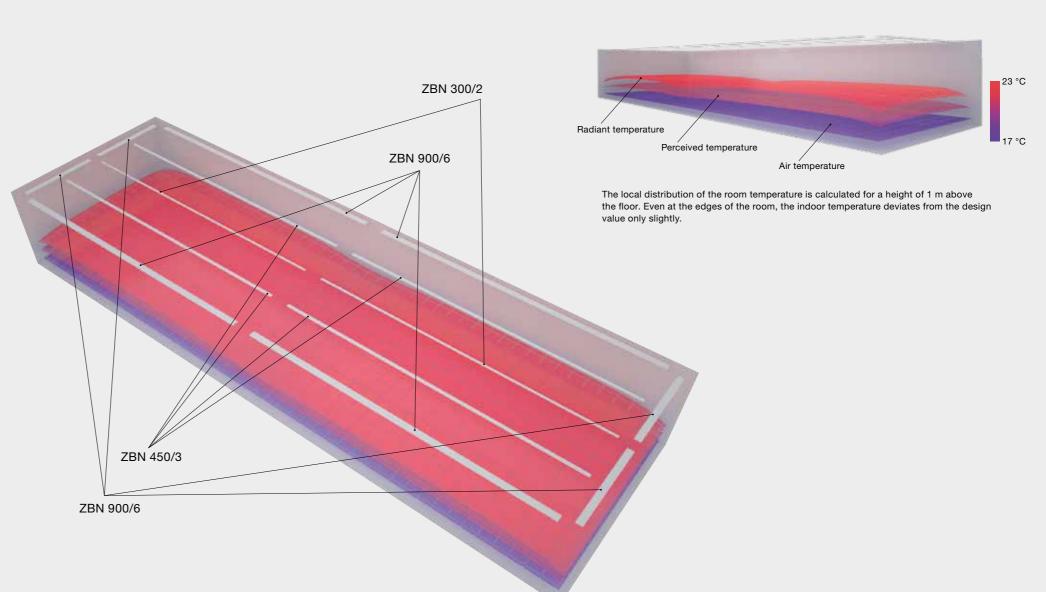
Example of layout and arrangement The following example shows how a hall is dimensioned.

Objective

Even indoor temperature (20 °C) throughout the entire room.

Specifications

Free-standing hall: Length 100 m, width 30 m, height 8 m Air exchange: 0.3 1/h Outdoor temperature: -12 °C


Heat load

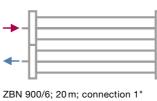
Design transmission heat loss:	108,500 W
Design ventilation heat loss:	77,260 W
Design heat loss:	185,760 W

Layout of the radiant ceiling panels Flow temperature: 80 °C Return temperature: 70 °C

Arrangement

- Five radiant panel strips arranged lengthwise, divided into sections in the centre, uniform centre-to-centre distance of 7.2 m, outer strips dimensioned greater than inner ones.
- One strip at each face end, divided into sections; distance from strips to outer walls 1.5 m.

Ра

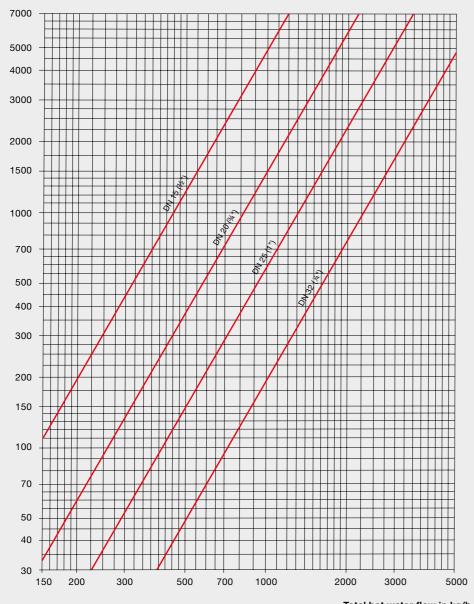

2 loss

Ť

Pressure loss calculation

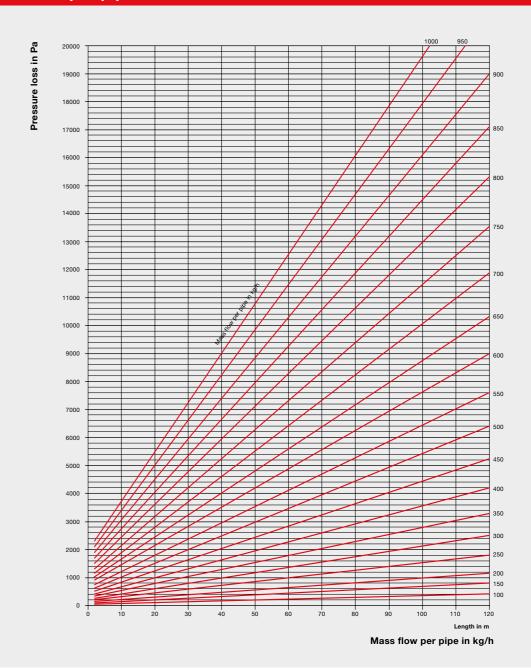
The pressure loss for Zehnder ZBN radiant ceiling panels is calculated as a total of the pressure loss in the pipe and the pressure loss in the headers. When using Zehnder volume flow controllers, the additional pressure loss for the volume flow controllers should be added to this.

Determining the pressure loss:




1 Calculate total mass flow of the radiant ceiling panel in question. e.g. m = 891 kg/h (see page 24)

Calculation formula: $\dot{m} = (\dot{Q} * 0.86) / \Delta T$ $\dot{Q} = output (w)$ $\Delta T = spread (K)$ m = mass flow (kg/h)


2 Refer to the graph for the pressure loss of the pair of headers. For example, $\Delta p_{pair of headers} = 475 \text{ Pa}/$ pair of headers, at 891 kg/h and 1" pipe connection

Pressure loss of the pair of headers including connections

Pressure loss per pipe

- 3 Refer to the graph for the pressure loss of the pipe. The mass flow is determined by dividing the total mass flow by the number of parallel pipes through which water is flowing, e.g. 891 kg/h:3 parallel pipes = 297 kg/h $\Delta p_{pipe} = 600 \text{ Pa}^{*}2$ (for flow and return) = 1,200 Pa

- 4 The overall pressure loss of the radiant ceiling panel is simply the sum of the individual pressure losses calculated thus far. For example, 475 Pa + 1,,200 Pa = 1,675 Pa

Hydraulic balancing of radiant ceiling panels

The correct water flow distribution for the heating water flow is important for operating any branched heating or cooling system efficiently. (It must also be possible to fill, shut off and empty all radiant ceiling panel strips separately.)

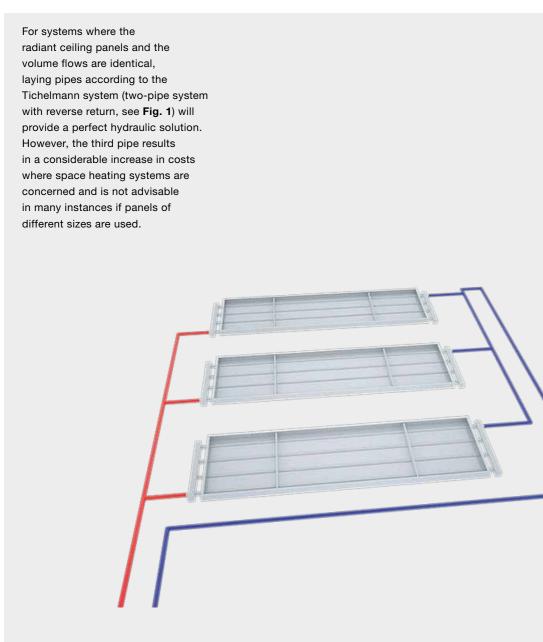


Fig. 1: Pipes laid according to the Tichelmann system (two-pipe system with reverse return)

Systems where the individual panels have different outputs must be subjected to hydraulic balancing by means of the pipework design and adjustments. This process, however, demands a large investment in terms of time and money.

Hydraulic balancing is made easier with the Zehnder volume flow control combination (VSRK) (Fig. 2).

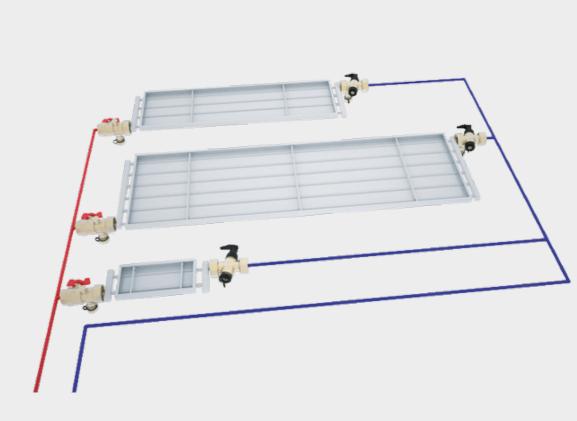


Fig. 2: Simpler pipe layout with Zehnder volume flow control combination (VSRK)

The Zehnder volume flow control combination VSRK

The VSRK is a complete set consisting of a volume flow controller and ball cocks.

The controller is set to the volume flow of the strip ex works. This removes the need for any timeconsuming adjustment work on site.

Other advantages of the VSRK:

- Constant heating medium flow even when there is a high differential pressure
- Hydraulic balancing for radiant panels of different sizes

Longer-size panels need to have a flexible connection (armoured hose).

The Zehnder volume flow control combination is suitable for an operating temperature of -10 °C up to a maximum of 120 °C and a maximum operating pressure of 16 bar. The working condition is permitted for the following medium: Water and ethylene/propylene glycol water mix (max. 50%), ph value 6.5–10.

Article numbers:

VSRK Combination VSRK Combination VSRK Combination VSRK Special 15/15/ VSRK Special 25/15/ VSRK Special 25/25/ VSRK Special 32/25/ VSRK Special 32/32/ Flow, separate DN15 Flow, separate DN25 Flow, separate DN32 Controller, separate Controller, separate Controller, separate Armoured hose DN1 Armoured hose DN2 Armoured hose DN3 Insert for VSRK DN1 Coupler screw connection 1 1/4" x 1 Coupler screw 501480 connection 1 1/2" x 1 1/4"

For more information, visit: www.zehnder-systems.com

ing for radiant nt sizes			ow controller N15		w controller N25	Volume flow controller DN32		
need to (armoure	have a ed hose).	Mass flow (kg/h)	Minimum differential pressure (kPa)	Mass flow (kg/h)	Minimum differential pressure (kPa)	Mass flow (kg/h)	Minimum differential pressure (kPa)	
		30	20.0	150	20.0	600	15.0	
e flow co	ontrol	35	20.9	175	20.9	700	15.3	
able for a	an	40	21.8	200	21.8	800	15.7	
ure of -1	0 °C up to	45	22.7	225	22.7	900	16.0	
°C and a	a maximum	50	23.6	250	23.6	1,000	16.3	
of 16 ba	r.	55	24.4	275	24.4	1,100	16.7	
ion is pe	rmitted	60	25.2	300	25.2	1,200	17.0	
•	later and	65	26.0	325	26.0	1,300	17.3	
	ater mix	70	26.8	350	26.8	1,400	17.7	
ue 6.5–10		75	27.5	375	27.5	1,500	18.0	
00 0.0 1	0.	80	28.2	400	28.2	1,600	18.3	
		85	28.9	425	28.9	1,700	18.7	
		90	29.6	450	29.6	1,800	19.0	
		95	30.3	475	30.3	1,900	19.3	
		100	30.9	500	30.9	2,000	19.7	
		105	31.5	525	31.5	2,100	20.0	
DN15	509780	110	32.1	550	32.1	2,200	20.3	
DN25	509800	115	32.7	575	32.7	2,300	20.7	
DN32	509810	120	33.2	600	33.2	2,400	21.0	
5/15	505380	125	33.7	625	33.7	2,500	21.3	
5/15	505390	130	34.2	650	34.2	2,600	21.7	
5/25	502400	135	34.7	675	34.7	2,700	22.0	
5/25	505200	140	35.2	700	35.2	2,800	22.3	
2/32	505430	145	35.7	725	35.7	2,900	22.7	
	501000	150	36.1	750	36.1	3,000	23.0	
15		155	36.5	775	36.5	3,100	23.3	
25	505180	160	36.9	800	36.9	3,200	23.7	
32	505190	165	37.3	825	37.3	3,300	24.0	
• DN15	502410	170	37.7	850	37.7	3,400	24.3	
9 DN25	502420	175	38.0	875	38.0	3,500	24.7	
e DN32	502430	180	38.3	900	38.3	3,600	25.0	
15	509260	185	38.7	925	38.7			
25	509280	190	39.0	950	39.0			
32	509310	195	39.2	975	39.2			
15	501030	200	39.5	1,000	39.5			
		205	39.8	1,025	39.8			
1"	501470	210	40.0	1,050	40.0			

Connection size for Zehnder volume flow control combination Flat-sealing coupler VSRK dimensions Controller or ball valve screw connection С Α в DN15 Rp ½" G ¾" Rp ¾" DN25 G 1 ¼" Rp 1 ¼" Rp 1" DN32 Rp 1 ¼" G 1 ½" Rp 1 ½"

Return

Flow

ions						
Male thread of hose	Conical male thread	Header female thread				
D	E	F				
R ½"	R 1⁄2"	R 1⁄2"				
R 1"	R 1"	R 1"				
R 1 ¼"	R 1 ¼"	R 1 ¼"				

Tender specifications

Zehnder ZBN radiant ceiling panel, with registers made from precision steel tubes (ØA 28 mm), openly accessible manifolds and all necessary connections welded on at the factory.

The tube ends must be machined at the factory so that press fittings with O-rings can be used without the need for further reworking. The tubes and radiant plate must be highly thermally conductive and joined securely. This is ensured by the original Zehnder double-point spot welding. The thickness of the radiant plate must not exceed 1.15 mm.

Mounting the radiant plate using steel spring clips or clamping with profiles is not permitted for reasons relating to the warranty and heat.

The horizontal radiant panel sheets are statically selfsupporting due to the directly radiating half-beading at the bottom and due to lateral chamfers of 5 cm at the top and 2 cm inside. These also serve to hold down the insulation. For structural reasons, flat radiant panel systems without beading or surfaces with profiles at the top are not permitted. Uneven radiant plates which deviate from the horizontal plane are excluded.

Suspension axis clearances of up to 3.25 metres must be possible without additional securing structures or carrier systems. Zehnder ZBN units are manufactured using a highquality, all-round polyester powder coating. Tube registers with a simple anti-rust coating or wet coating are not permitted. Each radiant panel strip is finished with welded end plates.

Zehnder ZBN radiant ceiling panels have been tested in accordance with EN 14037 Parts 1–3, ensuring high quality and thermal output in the long term. The radiant ceiling panel Zehnder ZBN has a proportion of radiation of up to 81%, depending on its configuration. The maximum permitted operating pressure corresponds to level 3 in the certification guidelines (10 bar). Version available for higher operating pressure on request.

The radiant ceiling panels are delivered with max. sublengths of 7.50 m.

The heating installer will connect the sub-lengths and install the cover plates.

Zehnder ZBN radiant ceiling panels are tested for their ball impact resistance according to DIN 18032.

Brand:	Zehnder
Туре:	ZIP radiant ceiling panels

Thermal insulation

Thermal insulation

Mineral wool, laminated on one side with reinforced alu-mesh foil

 λ = 0.038 W/mK, thickness 40 mm

Insulation in LDPE foil

Mineral wool free lined with black fleece according to EU directive 97/69 (note Q) and shrink-wrapped in LDPE foil λ = 0.040 W/mK, thickness 40 mm

Sound-absorbent insulation

Glass wool, coated with glass mat on both sides (natural/black) λ = 0.035 W/mK, thickness 40 mm

Polyester insulation

Thermally bonded polyester mat made from 100% polyester fibres without chemical binding agent, laminated on one side with reinforced alu-mesh foil $\lambda = 0.045$ W/mK, thickness 40 mm

Operating parameters

Heating medium	/ °C
Room temperature	/ °C
Operating pressure	bar
Thermal output (overall)	W
Module length (overall)	m

Press-fit connection (Article no. 506800)

Galvanised press-fit connection 28 mm piece(s)

Upper covers

Dust protector panel

Galvanised upper plate cover (thickness 0.63 mm) incl. fixing clamps and screws – delivered loose

Ball guards

Galvanised metal grill cover incl. fixing clips and screws for use in sports facilities – delivered loose

Fastening system

K 33 fixing kit (Article no.: 501290) for fixing to concrete ceilings	piece(s)
K 34 fixing kit (Article no. 501300) for fixing to steel profile	piece(s)
K 36 fixing kit (Article no. 501310) for fixing to trapezoidal sheet metal	piece(s)
K 37 fixing kit (Article no. 504900) for fixing to inclined steel girders	piece(s)
K 38 fixing kit (Article no. 504910)	

for fixing to horizontal steel girders piece(s)

Volume flow controller

Zehnder volume flow control combination consisting of a volume flow controller and a ball valve. The volume flow controller is a valve combination which consists of an automatic flow rate controller (with a nominal value that can be set at the factory) and an actuator head. The actuator head can be equipped with an actuator or a temperature controller (threaded connection M30 x 1.5).

The volume flow control combination is usually applied to hydraulic balancing as well as to room temperature control. Due to the integrated barrier and draining, connected consumers can be shut off and cleaned or drained individually (threaded connection M30 x 1.5 mm).

Technical specifications:	
Dimensions:	DN25
Max. operating temperature ts:	120 °C
Min. operating temperature ts:	-10 °C
Max. operating pressure ps:	16 bar
Max. differential pressure:	4 bar
Connections:	Female thread Rp1"
	Male thread G 11/4"

Medium: Water or ethylene/propylene glycol water mix (max. 50%), ph value 6.5–10 Housing made of dezincification-resistant brass, seals made

of EPDM or PTFE, valve spindle made of stainless steel.

Article numbers:

VSRK Combination DN15	509780
VSRK Combination DN25	509800
VSRK Combination DN32	509810
VSRK Special 15/15/15	505380
VSRK Special 25/15/15	505390
VSRK Special 25/25/25	502400
VSRK Special 32/25/25	505200
VSRK Special 32/32/32	505430
Flow, separate DN15	501000
Flow, separate DN25	505180
Flow, separate DN32	505190
Controller, separate DN15	502410
Controller, separate DN25	502420
Controller, separate DN32	502430

Armoured hose

Zehnder armoured hose for heating systems, consisting of temperature-resistant and age-resistant EPDM with stainlesssteel braided sleeve.

Hose DN25

Inner installation dimension:	500 mm
Hose length:	545 mm
Permissible operating pressure:	10 bar
Operating temperature range:	100 °C
Connections:	Male thread R1"
	Coupler Rp 1¼"
Article numbers:	
Armoured hose DN15	509260
Armoured hose DN25	509280

Armoured hose DN25	509280
Armoured hose DN32	509310
Insert for VSRK DN15	501030
Coupler screw connection 11/4" x 1"	501470
Coupler screw connection 11/2" x 11/4"	501480

ALWAYS THE BEST CLIMATE

"We strive to improve the quality of life by providing the finest indoor climate solutions."

Excellent team Every day we combine passion, expert knowledge and commitment to give you the best results.

Great solutions, products and services Great products and unique service for an energy-efficient, healthy and comfortable indoor climate.

First choice for customers Always close to the needs of our customers, to grow with you and overcome all challenges together.

MANUFACTURER OF THE WORLD'S -1st

STEEL AND BATHROOM

15 PRODUCTION PLANTS IN EUROPE, NORTH AMERICA AND CHINA

WE ARE THE SPECIALISTS FOR A HEALTHY, COMFORTABLE AND ENERGY-EFFICIENT

The broad and clearly structured portfolio from the Zehnder Group is split into four product lines. Consequently, we can provide our customers with the right product, perfect system and matching service for all types of projects – from new build to renovations, single or multi-occupancy homes, as well as commercial projects. This variety ensures that our wealth of experience is continuously expanding, providing tangible added value to our customers on a daily basis.

Decorative radiators

Our individual decorative radiators for living and bathrooms make a home not only warmer but also more attractive. Created by renowned designers, they impress with excellent functionality.

INDOOR CLIMATE

Comfortable indoor ventilation

Our comfortable indoor ventilation is

energy-efficient and provides a healthy

indoor climate. It promotes the wellbeing

of the occupants and increases the value

Zehnder ceiling systems are convenient and energy-efficient for heating and cooling. They are perfectly attuned to the relevant environment.

OUR BRANDS REPRESENT INNOVATION, QUALITY AND DESIGN

The Zehnder brand offers excellent indoor climate solutions within the product lines of decorative radiators, comfortable indoor ventilation, heating and cooling ceiling systems and clean air solutions.

BISOUE The Bisque brand offers beautiful but practical radiators in the most exciting styles, colours and shapes for homes and more.

of the property.

The Greenwood Airvac brand offers a range of low energy, smart residential ventilation solutions from intermittent extract fans to whole house ventilation with heat recovery.

Heating and cooling ceiling systems

Clean air solutions

Clean air systems from Zehnder reduce the level of dust in the air, create a healthier working environment and reduce the amount of cleaning required.

BEST QUALITY CERTIFICATES

Zehnder Group products are frequently awarded prizes for design and innovative technology.

Zehnder Group UK · Watchmoor Point · Camberley · Surrey · GU15 3AD T +44 (0) 1276 605800 · sales@zehnder.co.uk · www.zehnder.co.uk Registered in England 2296696