Trenchless pipe laying

direxiona'

Contents:

Introduction

01 horizontal directional drilling
phase 1 : drilling the pilot hole
phase 2 : enlarging the pilot hole
phase 3 : pulling the pipe string
02 pipe bursting
03 pulling through a casing
04 the benefits of trenchless pipe laying
05 the PAM offer
06 anchoring technologies
07 the material
08 the PAM service
09 the PAM experience
10 the PAM range

Trenchless pipe laying

Ductile iron represents a reliable and advantageous alternative to the materials normally used in horizontal directional drilling. The sturdiness, materials normaly used in horizontal directional driling. The sturdiness, technology to enable pipeline flexibility.

A little history

The horizontal directional drilling technique appeared at the beginning of the $20^{\text {min }}$ century but only started
 driling "at an angle" to true directional drilling that could follow a curved path
The further improvement in the 1970 in in hydraulics have enabled uninteryuted driling and the pulling
throuht of rods o a predetermined profili. With the development of location tools, horizontal directional
drifling has trull become an effective technique. drilling has truly become an effective technique.

3 types of implementation
The development of ductile iron pipeiine anchoring techniques has enabled PAM to ofier complete solutions Barsed on the mechanical strength and the angular deflection capability of Universal Ve self-anchored joints,
PAM has chosen 3 trenchless pipe laving techniaies horizontal directional drilling, pipe bursting and pulling into a sleeve.
«There are places where being unobtrusive is paramount.»

Drilling the pilot hole

A drilling machine located at the pipe's exit point will carry out the pilot drill to the pipe string start point.
An electronic sonde, located in the drilling head and coupled with a detection and guidance system will enable the planned path to be followed with great accuracy (+ /- 5 centimeters)

Drilling with 3 tools The dilling head. fited witha a cuting head suited to
the round, minection nozzes and a sonde. is driven She gotuna, inection nozzes and a sonde, is sivien The dilling rods are used to:
 - Iratect ture driting drilinad and its tools horizontal direction

- transport the drilling fluid - transport the driling tluid
pint the boring tools
instal the final pipeline

The transmiting sonde located in the drilling head
continuously reports its altimetric and planimetric continuousty eports th atimetric and pulanime etric
position. This enables heoperator to guide the dri-
ling accurately using the information they see on their
screens

Since the drillilg head is asymmetric or fitted with
independent tolless its trajectory can be modified during continuing driling.
There are different driling tools suitable for the constraints presented by the ground encountere
(boring head, enlarging cone, diamond tip, etc.).

Pipe laying by HDD* to DN 1000 simple and easy to use and supplied as 6 or 7 meters pipes, PAM pipes feature a
(4) Horizontal directional drilling

Horizontal directional drilling
Phase 2

Enlarging the pilot hole

When the drilling head exits at the opposite end, it is replaced by a boring head that will be pulled in the opposite direction by the drilling unit. Traversing the pilot hole along the entire path, the boring head widens the hole diameter, adapting it to the dimensions required for the pipeline to pass through.

Where innovation combines with savings
Horizontal directional drilling techniques are innovative in the field of saving energy, saving materials and recycling. Beyond the virtuous circle illustrated by bentonite treatment and reused horizontal diriec-
tional drilling enables a 4 X reduction in tional drilling enables a 4 X reduction in greenhouse gas emissions compared to a traditional operation.
(e.g. emission of 30 kg CO , elinear metre of DN 150 pipeline when laid using horizontal directional drilling compared to $119 \mathrm{~kg}^{2} \mathrm{CO}_{2}$ ellinear meter when laid using an open trench).

Horizontal directional drilling Phase 3

PAM has designed and produced pulling heads to DN 1000 Once the boring operation is complete, the tunnel
remains filled with bentonite. This acts s s an execlent

Archimedes knew it a long time ago!

Pulling an anchored pipe string

Universal Standard Ve pipes resist very high pulling forces. That makes them the optimum solution for pipe laying using horizontal directional drilling.

Any bocy plunged into a liquid at rest, completely immersed in it or passing through its free surface, experiences a vertical force, directed upwards and opposed to the weight of the disp the drilled bore by the hydust ta thiron pipes above DN 300 are pressed against the vaut of the drilled bore by the hydrostatic thrust

Pipe bursting

One technique, two processes
Pipe bursting is used to replace one damaged pipeline with another of the same diameter or, often, a slightly larger diameter. The old pipeline can be burst in-situ or removed piece by piece and broken up as it is pushed out of the tunnel.

This technique to replace old pipelines enables a da-
maged piep to be replaced dy a new pre-assembled
Unversil Maged
Universal Ve type ductile iron pipes of an ansequiviled ent
or slighty of the old diperine. TThis technonoloyg is also nsed to
considerably reduce the site impact. The pipes are

Pulling through a casing

 retaining the flexibility offered by elastomer gaskets.

This laying method can be chosen for specific rehabi-
litation techniques (passing through an existing itation tectniques (passing through an existing da-
maged pipe) or when laying new networks crossing maged pipe) or when laying new networks crossing
a natural obstacle or in the case of trenchless works. When pulling through a casing, you must first define: - the centring and guiding of each element within the casing

- the method used to anchor the elements to-
gether too
beinarantee the integrity of the section instaled
- the method used to connect the section passing
through the casing to the existing network
- the best pulling mechanism from a technical and The choice of pipeline diameter will be guided
either by determining the most suitable hydraueither by determining the most suitable hydra-
lic diameter in the case of a new pipeline, or the

Important: the pipes must always be installed by pulling, never by pushing
Pulling through a casing

The puling device is installed on the first pipe tha pipe overhanging slightly. Different types of pulling mechanisms can then be used depending on the
type of pipes installed as well as the length of the
 he guide and anchored to the first before in turn
seing pulled into the casing. The process of assem bing and pul ling the pipes continues until the before connecting the new pipe at both ends.

Did you know

For pipes with a nominal diameter greater than 800 mm or where there are gsepetific
difficultes it is necessay
 centring and guiding supports. Depending on
the project specifics, PAM will investigate the creation of specific supports and arrange for subcontracing of then supply. With all thes insert 2 pipelines within a single casing.

An economical, durable and unobtrusive solution

Ductile iron has progressively taken its place in the field of horizontal directional drilling thanks to its economic, technical and environmental benefits.

The PAM offer

Ductile iron

For decades, PAM ductile iron's reputation for strength, durability and reliability has been recognised worldwide.

Universal Ve self-anchored joint: "a proven technology giving access to trenchless operations".

A high security technology

For trenchless pipe laying, PAM has designed a particularly effective anchoring system which guarantees optimum sealing and flexibility while supporting pulling efforts as high as 100 tonnes for the largest diameters.

The material

From research to implementation

All projects are supported by customised assistance and the initial technical project study guarantees the success of the pulling operation.

Did you know
The Moselle river was crossed by a DN 150 The Mosele river was crossed by a DN 150
pipeline over a length of 210m. The work was
carried out by a drilling machine with a capacarried out by a driling machine with a capa-
city of 20 tonnes. city of 20 tonnes
Operations to carry out drilling, boring, deli-
ver and remove the equipment were complever and remove the equipment were comple-
ted in a little less than 4 days. The operation to pull pre-assembled pipes itself took les than 3 hours. The final 450 mm boring took place in a sandy gravel soil. Fascicule 70 relating to initial geotechnical research.

Many references, one expertise

With more than 20 years working in the field of trenchless pipe laying, PAM has gained sufficient experience to operate on the most technically demanding sites.

Initially developen in Europe for the German market, combining the trenchless pipe laying technique with PAM
products has continued to develop. Operating in the trenchless field in France for more than 20 years, PAM has been the supplier to more than 250
construction sites in Europe the laggest in tems of diameter being in the Netherlands (DN 800) With lengths construction sites in turope, the argest in terms on
varying between 25 and 1500 linear metres (DN 150), this processs can meet the requirements of all projects.

Number of HDD operations by DN

Average length in m by $D N$

Did you know PAM records

	Leu	Lonqueur	DN	Année
$\begin{aligned} & \text { The } \\ & \text { longest } \end{aligned}$	Hamburg Germany	1500 m	150	2003
The diameter in Europe	$\begin{aligned} & \text { The } \\ & \text { Netherlands } \end{aligned}$	330 m	800	2004
The largest diameter diameter	Lille	240 m	700	2006

More than 90,000 linear metres of PAM pipes have been laid to-date using horizontal directional drilling. The equivalent of 2 Channel tunnels!

The PAM range

DIREXIONAL TT PE and TT PUX pipes

(normal situations)

DN	$\stackrel{\mathrm{L}}{\mathrm{~m}}$	$\stackrel{e}{e}$	DE	$\underset{y}{\text { B }}$	Mass	Exterior	Partno.
100	5.95	6.0	118.0	188.0	118	TTPE	22792
125	5.95	6.0	144.0	215.0	147	TTPE	227926
150	6.00	6.0	17.0	230.0	175	TTPE	227928
200	5.96	6.3	222.0	29.0	241	TTPE	227929
250	5.95	6.8	274.0	350.0	320	TTPE	227937
300	5.95	7.2	326.0	408.0	405	TTPE	227938
350	5.97	7.7	378.0	463.0	512	TTPE	227945
400	5.97	8.1	429.0	510.0	602	TTPE	227946
450	5.97	8.6	480.0	570.0	718	TTPE	228956
500	5.97	9.0	532.0	625.0	833	TTPE	22794
600	5.97	9.9	635.0	740.0	1067	TTPE	227948
700	5.97	10.8	736.6	855.0	1399	TTPE	227949
800	6.88	11.7	840.4	980.0	1941	ITPUX	22957
900	6.87	12.6	94.2	1087.0	2367	ITPUX	229158
1000	6.88	13.5	1046.0	1191.0	2814	ITPUX	22960

DIREXIONALTT ZMU pipes (for rocky soils)

(for rocky soils)							
DN	L	e	DE	${ }^{\text {B }}$	Mass	Exterior	Part
100	5.97	6.0	128.0	196.0	133.5	TtzMU	22430
125	5.97	6.0	154.0	225.0	166.0	tizMu	22433
150	5.97	6.0	180.0	251.0	195.4	tizMu	224305
200	5.97	6.3	232.0	307.0	268.1	tizMU	224307
250	5.97	6.8	284.0	367.0	353.5	TTZMU	2243
300	5.97	7.2	336.0	425.0	445.5	trzMu	224309
350	5.97	7.7	378.0	48.0	527.0	ttzMU	224310
400	5.97	8.1	439.0	535.0	650.3	trzmu	224311
500	5.97	9.0	542.0	677.0	891.4	TTZMU	224312
600	5.97	9.9	645.0	750.0	1135.4	TTZMU	224313
700	5.97	10.8	748.0	865.0	1392.8	TTZMU	224314
Nature of coatings							
TT PE: extruded HDPE coatingTT PUX: reinforced polyurethane coating							

TT ZMU - DN 100 to DN 700

The PAM rance

HDD metal protection cone

DN	Partno.	Mass	Width	Thickess
mm		kg	mm	
100	110326	0.70	120	1.00
125	20975	0.75	120	1.00
150	110325	0.85	120	1.00
200	11032	1.20	130	1.00
250	11032	1.50	140	1.00
300	11032	1.80	155	1.00
350	20776	2.80	160	1.20
400	110321	3.00	170	1.20
450	211369	3.20	170	1.20
500	110320	3.50	180	1.20
600	11032	5.00	195	1.20
700	110328	6.00	210	1.20
800	288265	8.00	192	1.50
900	228268	11.70	285	1.50
1000	28820	9.00	192	1.50

TT PE \& TT PUX elastomeric muff

DN	Exterior coating	Partno.	Type
100	PE	JSB1OYat	TTPE muff
125	PE	JsB12Yat	TTPE muff
150	PE	JsB154at	TTPE muff
200	PE	js820Yat	TTPE muff
250	PE	JS8254T	TTPE muff
300	PE	jsb3OYA	TTPE muff
350	PE	158071	Tubularsleve
400	PE	158880	Tubulars seeve
450	PE	158094	Tubularsleve
500	PE	158094	Tubular sleve
600	PE	123649	Tubularsleeve
700	PE	211186	Tubularsleve
800	PUX		Band f roll
1000	pux	+	Band \& roll

TT ZMU elastomeric muff

DN	Exterior	Partno.	Type
mm	coaing	11082	zWU muff
125	trzmu	173263	ZWU muff
150	TTZMU	110821	ZWU muff
200	TTZMU	11082	ZWU muff
250	TTZMU	110828	ZMU muff
300	TTZMU	11083	ZWU muff
350	tTzMU	110789	ZMU muff
400	tizMU	110750	ZMU muff
500	TTZMU	11077	ZWU muff
600	TTZMU	11077	ZWU muff
700	TTZMU	110026	ZWU muff

Pulling head for horizontal directional drilling

DN	Partno.	Partno.	Type	Mass
mm				kg
100	173371 - 01	Univesal ITs-K	One piece	21.00
125	17768-E01	Univeral ITs-K	One piece	21.00
150	17786-E01	Univesal ITs-K	One piece	31.00
200	177685-001	Univesal Tis-K	One piece	42.00
250	17764-E01	Univeral ITs-K	One piece	70.00
300	17763--601	Univesal ITs-K	2 pieces	200.00
350	17689-E01	Universalve	2 pieces	260.00
400	21572- - 01	Uniesalve	2 pieces	290.00
450	184694-001	Univeralve	2 pieces	370.00
500	21579-E01	Uniesalve	2 pieces	445.00
600	21587- - 01	Universalve	2 pieces	604.00
700	21598-E01	Universalve	2 pieces	1055.00
800	229305	Univesalve	2 pieces	1455.00
900	223307	Univeralve	2 pieces	1920.00
1000	229309	Universlve	2 pieces	2110.00

SAINT-GOBAIN PAM worldwide

