

CONTENTS

Storage	3
Handling	7
Blutop / Blutop	

Blutop ${ }^{\circledR}$ / Blutop ${ }^{\circledR}$ Vi / Topaz ${ }^{\circledR}$ / Topaz ${ }^{\circledR}$ Vi joint 11
Standard joint / Standard Vi / ViLoK ${ }^{\circledR}$ joint 15
Express ${ }^{\circledR}$ New joint / Express ${ }^{\circledR}$ New Vi joint 19
Express ${ }^{\circledR}$ joint 23
Universal Vi joint 27
Universal Ve joint 29
Standard Ve joint 35
TAG ${ }^{\circledR}$ / IM joint 39
Flanged joint 43
Assembly equipment 47
Pipe cutting 53
Locking weld bead 61
Anchor blocks 65
Anchoring 69
Hydraulic testing 73
External coating repairs 77
Internal lining repairs 81
Repair products 83
Polyethylene sleeve 87
Ovality correction 93
Dismantling joints 97
Repairing pipes 103
Branches for sewage pipes 109
Video tutorials 117

Storage

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) PREPARE THE STORAGE AREA

The storage area for pipes, fittings and accessories must be organized for each type of products and also by diameter.

Do not store products on unstable or sloping ground.
Avoid:

- Marshy ground
- Contaminated ground
-Placing pipes directly on the ground
Support beams, spacers and chocks must be made from construction-grade lumber without any brittle knots. The minimum dimensions are specified in the following tables.

(2) STORE THE GASKETS

(according to the latest version of ISO 2230)
In particular, avoid:
-Removing gaskets from their bags
-Exposing gaskets to sunlight
-High storage temperatures
Restrict storage times.
Storage life: in ten years for EPDM (drinking water systems) and seven years for other gaskets in optimal storage conditions (contact us for our recommendations).
Refer to ISO 2230:2002 - Rubber products - Guidelines for storage
When installing pipes at low temperatures, bring rings up to a temperature of $20^{\circ} \mathrm{C}$ to ensure maximum flexibility (such as by immersing them in warm water).

Storage

3 DN 60 TO 300: DELIVERY IN BUNDLES

Stack while keeping the bundles perfectly square. Do not exceed the maximum heights specified in the following table.

4Always ensure a good tension of the bundle straps. Never lift a bundle with hooks or vacuum pads. Use slings that support the bundle from underneath (the straps used to secure the bundles are not slings and are not designed to withstand the load).

Bundle stack heights

Maximum number of stackable bundles

Type of pipe	DN	Numberof bundleson theground	Max. no. stacked bundles	Bundle contents and dimensions			
				L	$\begin{aligned} & \text { W } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~m} \end{aligned}$	Bundle weight (kg)
NATURAL INTEGRAL	$\begin{gathered} 60 \\ \text { (24 pipes/bundle) } \end{gathered}$	6	6	6.3	0.54	0.49	1411
	$\begin{gathered} 80 \\ \text { (15 pipes/bundle) } \end{gathered}$	5	6	6.3	0.57	0.42	1148
	$\begin{gathered} 100 \\ \text { (15 pipes/bundle) } \end{gathered}$	5	6	6.3	0.67	0.50	1398
	$\begin{aligned} & 125 \\ & \text { (12 pipes/bundle) } \end{aligned}$	4	5	6.3	0.65	0.58	1380
	$\begin{gathered} 150 \\ (9 \text { pipes/bundle) } \end{gathered}$	3	5	6.3	0.59	0.66	1272
	$\underset{\text { (6 pipes/bundle) }}{200}$	3	5	6.3	0.75	0.56	1190
	$\stackrel{250}{(4 \text { pipes/bundle) }}$	2	4	6.3	0.63	0.67	1044
	$\begin{gathered} 300 \\ (4 \text { pipes/bundle) }) \end{gathered}$	2	4	6.3	0.74	0.77	1319
$\begin{aligned} & \text { BLUTOP } \\ & \text { TOPAA } \end{aligned}$	$\begin{gathered} 75 \\ \text { (30 pipes/bundle) } \\ \hline \end{gathered}$	4	6	6.3	0.534	0.564	927
	$\begin{gathered} 90 \\ \text { (30 pipes/bundle) } \\ \hline \end{gathered}$	3	5	6.3	0.635	0.605	1095
	$\begin{gathered} 110 \\ \text { (20 pipes/bundle) } \\ \hline \end{gathered}$	3	4	6.3	0.608	0.621	904
	$\begin{gathered} 125 \\ \text { (20 pipes/bundle) } \\ \hline \end{gathered}$	3	4	6.3	0.668	0.697	1032
	$\begin{gathered} 140 \\ (12 \text { pipes/bundle) } \\ \hline \end{gathered}$	3	4	6.3	0.631	0.531	902
	$\begin{gathered} 160 \\ \text { (12 pipes/bundle) } \end{gathered}$	3	5	6.3	0.626	0.71	825

Storage

(4) DN 350 TO 2000: LOOSE DELIVERIES

Stack pipes into pyramids or use spacers without exceeding the maximum heights specified in the tables on page 6 to avoid damaging the products.

Stacking in pyramids

Nail chocks to the support
beams on the ground (at the ends and between each pipe).

Stacking with spacers
Nail chocks to the end of each spacer.

- θ°
To improve storage safety, add two extra support beams at the ends of the stack as shown above.

Storage

Bundle stack heights (DN 350 to 2000)

Pyramid-Standard Pipes		
DN	Number of layers	Stack height (m)
$\mathbf{3 5 0}$	13	3.90
400	11	3.82
$\mathbf{4 5 0}$	10	3.92
$\mathbf{5 0 0}$	9	3.92
$\mathbf{6 0 0}$	7	3.72
$\mathbf{7 0 0}$	6	3.74
$\mathbf{8 0 0}$	5	3.61
$\mathbf{9 0 0}$	4	3.31
$\mathbf{1 0 0 0}$	4	3.67
1100	3	3.10
$\mathbf{1 2 0 0}$	3	3.38
$\mathbf{1 4 0 0}$	3	3.95
$\mathbf{1 5 0 0}$	2	2.95
$\mathbf{1 6 0 0}$	2	3.13
$\mathbf{1 8 0 0}$	2	3.52
$\mathbf{2 0 0 0}$	2	3.91

Spacers -Standard Pipes		
DN	Number of layers	Stack height (m)
350	6	2.81
400	6	3.12
450	5	2.87
500	5	3.13
600	4	2.93
700	4	3.36
800	3	2.89
900	3	3.18
1000	3	3.51
1100	2	2.58
1200	2	2.79
1400	2	3.21
1500	2	3.42
1600	2	3.53

Stack chocks (DN350 to 2000)

DN	Trapezoidal chocks				Support beams			
	Cb mm	Pb mm	Hc mm	Ep mm	A mm	B mm	C m	D m
	330	170	80	80	100	100	5	4
$\mathbf{4 0 0}$	360	200	80	80	100	100	5	4
$\mathbf{4 5 0}$	400	200	100	80	100	100	5	4
$\mathbf{5 0 0}$	430	230	100	80	100	100	5	4
$\mathbf{6 0 0}$	490	250	120	80	100	100	5	4
$\mathbf{7 0 0}$	570	330	120	100	120	100	5	4.5
$\mathbf{8 0 0}$	640	340	150	100	120	100	5	4.5
$\mathbf{9 0 0}$	710	410	150	100	130	120	5	4.5
$\mathbf{1 0 0 0}$	780	380	200	100	130	120	5	4.5
$\mathbf{1 1 0 0}$	850	450	200	100	130	120	5	5
$\mathbf{1 2 0 0}$	910	510	200	120	150	120	5	5
$\mathbf{1 4 0 0}$	1010	610	200	120	150	120	5	5
$\mathbf{1 5 0 0}$	1080	580	250	120	150	120	5	5
$\mathbf{1 6 0 0}$	$\mathbf{1 1 4 0}$	540	300	120	150	120	5	5
$\mathbf{1 8 0 0}$	$\mathbf{1 3 0 0}$	700	300	150	180	120	5	5
$\mathbf{2 0 0 0}$	$\mathbf{1 3 5 0}$	750	300	150	180	120	5	5

Handling

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) BASIC ADVICE

To avoid damaging the products:

- Use lifting equipment that is capable of supporting the weights specified in the tables below.
-Prevent pipes from banging or rubbing against the trailer's sides and pillars.
-Lift and move the pipes gently to prevent any swinging.
-Do not drag pipes across the ground and do not let pipes fall to the ground.
(2) BUNDLE WEIGHTS AND DIMENSIONS

DN	No. layers x no. pipes	L	W	H	Bundle weight NATURAL/ BLUTOP	INTEGRAL/ TOPAZ bundle weight
		m	m	m	kg	kg
60	4×6	6.33	0.54	0.49	1356	
75	5×6	6.3	0.51	0.59	921	921
80	3×5	6.33	0.56	0.42	1098	1188
90	5×6	6.3	0.59	0.63	1122	1122
100	3×5	6.33	0.67	0.50	1337	1459
110	4×5	6.3	0.63	0.71	962	962
125	3×4	6.33	0.65	0.58	1040	1447
125	4×5	6.3	0.68	0.65	1034	1034
140	4×4	6.3	0.63	0.53	902	902
150	3×3	6.3	0.59	0.66	1196	1290
160	3×4	6.3	0.63	0.63	901	907
200	2×3	6.3	0.75	0.56	1087	1134
250	2×2	6.3	0.63	0.67	1013	984
300	2×2	6.3	0.74	0.77	1333	1234

NATURAL/INTEGRAL BLUTOP/TOPAZ

Handling

3 PIPE UNIT WEIGHT

DN	pipe length (m)		pipe weight (kg)				
	working	overall	NATURAL CLASSIC	BLUTOP TOPAZ	UNIVE All ver		INTEGRAL PLUVIAL
60	6.00	6.09	56.5				
75	6.00	6.11		30.6			
80	6.00	6.09	73.2		94.8	C 100	79.8
90	6.00	6.13		37.2			
100	6.00	6.09	89.10		116.7	C 100	97.3
110	6.00	6.15		45.6			
125	6.00	6.10	109.8		144.3	C64	120.0
125	6.00	6.16		53.4			
140	6.00	6.18		60.0			
150	6.00	6.10	132.9		173.8	C64	143.3
160	6.00	6.20		70.8			
200	6.00	6.10	181.2		239.2	C64	192.1
250	6.00	6.10	253.3		311.4	C50	254.9
300	6.00	6.11	333.3		401.3	C50	308.1
350	6.00	6.11	413.0		498.5	C40	393.4
400	6.00	6.11	476.4		586.5	C40	465.0
450	6.00	6.11	562.8		700.3	C40	506.5
500	6.00	6.12	666.9		831.2	C40	632.4
600	6.00	6.12	903.4		1121.2	C40	821.4
700	7.00	7.15	1295.1		1368.0	C30	1383.8
800	7.00	7.15	1591.7		1915.5	C30	1692.9
900	7.00	7.15	1940.2		2332.1	C30	2025.7
1000	7.00	7.16	2323.0		2696.6	C30	2386.5
1000	8.27	8.43	2712.3			C30	2787.3
1100	8.27	8.43	3238.1				3605.8
1200	8.26	8.43	3775.9		4250.8	C25	4154.9
1400	8.19	8.44	5182.5		5601.8	C25	5546.9
1500	8.18	8.45	5877.8		6330.8	C25	6240.1
1600	8.18	8.45	6589.4		7069.4	C25	6946.4
1800	8.17	8.45	8109.7		8602.4	C25	8444.9
2000	8.17	8.45	9837.6		10486.1	C25	10099.3

The preferred classes for NATURAL and CLASSIC pipes are as follows:
-C40 for DN 60 to 300
-C30 for DN 350 to 600
-C40 for DN 700 to 2000

4 DN 60 TO 300: LIFTING BUNDLES

Use textile slings suited to the load.
Ensure that the slings support the bundle from underneath.

Caution! Never lift a bundle with hooks or vacuum pads. The straps used to secure the bundles are not designed to withstand the load.

Handling

(4) DN 350 TO 2000:
 LIFTING BY THE ENDS

Use hooks that are suited to the load. Hooks must offer a secure attachment and a protective surface* (such as polyamide).
*Hooks available on order.

Caution: hooks are designed to lift single pipes and not a bundle of several pipes.

5 DN 350 TO 2000:

LIFTING BY THE PIPE BARREL

Use a textile sling suited to the load.
Attach the belt to the center of gravity and ensure that it does not slip.

6 HANDLING FITTINGS

Use textile slings to avoid damaging the internal lining and the external coating of the fittings.

Flanged fittings can be lifted using hooks attached to the holes in the flanges.

Blutop/Blutop Vi/Topaz/ Topaz Vi joint

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) CLEAN

Carefully clean the inside of the socket, the spigot and the gasket.
Keep all parts clean until assembly has been completed.

(2) LUBRICATE

Using a clean paintbrush, lubricate the fitting's gasket groove.

(3) INSERT THE GASKET

Ensure that the gasket is properly seated in its housing.
Always pull the gasket towards the outside to ensure that it is correctly positioned.
Ensure that the entire surface of the gasket
 is pressed in all points of the circumference

Blutop/Blutop Vi/Topaz/ Topaz Vi joint

(4) LUBRICATE

The inserted gasket and the spigot must be lubricated with Blutop lubricant paste (ref. 214616).

5 CHECK THE CHAMFER

If the pipe needs to be cut, chamfer the edge as shown below. After chamfering the edge, there should not be any sharp edges.

(6) ASSEMBLE

The pipe or fitting must be perfectly centered and aligned with the centerline of the installed pipe.
Refer to the "Assembly equipment" guide.

(7) CHECK THE DEPTH

After assembly, only a single line should still be visible.

Blutop / Blutop Vi / Topaz / Topaz Vi joint

8 CHECK THE POSITION OF THE GASKET

Before deflecting the joint, insert a metal rule into the socket gap and ensure that the depth of penetration is the same around the whole circumference. PAMmetal rule ref: 241031.

9 INFORMATION

Angular deflection

Pipes must be connected together while keeping them perfectly aligned with their centerlines.

The joint must only be deflected when fully assembled and before pressurizing the system.

Standard joint / Standard Vi/ViLoK joint

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

Using the marking as a reference, check that the gasket is suited to the project specifications:

- DN
- Material:
- For drinking water: EPDM
- For sewage: NBR+yellow marking (stripes or dots)

- Storage life: ten years for EPDM (drinking water systems) and seven years for other joints subject to optimal storage conditions (contact us for our recommendations).
- Refer to ISO 2230:2002 - Rubber products -

Guidelines for storage

(1) CLEAN

Carefully clean the inside of the socket, the spigot and the gasket.
Keep all parts clean until assembly has been completed.

2. INSERT THE GASKET

Insert the joint ring before the pipe is laid in the trench.

3 CHECK THE GASKET

Ensure that the gasket is properly seated in its groove and especially on the inner loop.

Always pull the gasket towards the outside to ensure that it is correctly positione d .

Standard joint / Standard Vi/ViLoK joint

(4) MARK THE INSERTION DEPTH

(if there is no original marking, i.e. if the pipe has been cut or a spigot is used from a different range).

Mark the spigot at a distance of P-J mm.

Caution: failure to adhere to the insertion depth
will affect the performance of any angular deflections.

DN (mm)	$\mathbf{P}(\mathrm{mm})$	$\mathrm{J}(\mathrm{mm})$	$\mathrm{P}-\mathrm{J}(\mathrm{mm})$
$\mathbf{6 0}$	89.5		74.5
$\mathbf{8 0}$	92.5		77.5
$\mathbf{1 0 0}$	94.5		79.5
$\mathbf{1 2 5}$	97.5		82.5
$\mathbf{1 5 0}$	100.5	15	85.5
$\mathbf{2 0 0}$	106.5		91.5
$\mathbf{2 5 0}$	105.5		90.5
$\mathbf{3 0 0}$	107.5		92.5
$\mathbf{3 5 0}$	110.5		90.5
$\mathbf{4 0 0}$	112.5		92.5
$\mathbf{4 5 0}$	115.5	20	95.5
$\mathbf{5 0 0}$	117.5		97.5
$\mathbf{6 0 0}$	132.5		112.5
$\mathbf{7 0 0}$	192		167.0
$\mathbf{8 0 0}$	197	25	172.0
$\mathbf{9 0 0}$	200		175.0
$\mathbf{1 0 0 0}$	203		173.0
$\mathbf{1 1 0 0}$	225	30	195.0
$\mathbf{1 2 0 0}$	235		205.0
$\mathbf{1 4 0 0}$	245		205.0
$\mathbf{1 5 0 0}$	265		225.0
$\mathbf{1 6 0 0}$	265	40	225.0
$\mathbf{1 8 0 0}$	275		235.0
$\mathbf{2 0 0 0}$	290		250.0

Standard joint / Standard Vi/ViLoK joint

(5) LUBRICATE

Coat:

- The exposed surface of the gasket
- The pipe chamfer and spigot

Never lubricate the interior of the gasket groove. Apply a sufficient amount of lubricant paste with a paintbrush (refer to the quantities table on the next page).

Comply with the recommended applications
 specified in the safety data sheets available in the Downloads section on www.pamline.com.

DIFFERENT MARKINGS

DN60 to 600 and DN1400 to 2000

DN 700 to 1200

6 ASSEMBLE

Center and introduce the spigot into the perfectly aligned socket:
(a) Up to the marked line corresponding to "P-J mm"
(b) Up to the area between the white lines

DN 700 to 1200: three lines

- After joining two pipes (spigot and socket), only one line can be seen.
- After joining a pipe with a fitting, two lines can be seen.
- For STD Vi and ViLoK joints, extend the gasket by pulling the spigot out of the socket until correctly seated.

Failure to observe the insertion depths could lead to the risk of leaks.

(7) CHECK THE ASSEMBLY

Before angular deflection, insert a metal rule into the socket gap and ensure that the depth of penetration is the same around the whole
 circumference.
PAMmetal rule ref: 241031

- In cold temperatures and especially with small diameters, store joints in a heated room.
- Gaskets can be soaked in water for easier set up.

Standard joint /
 Standard Vi/ViLoK joint

8 INFORMATION

Cuts and chamfers

Lubricant paste

Number of boxes for 100 joints									
DN	No.	DN	No.	DN	No.	DN	No.		
$\mathbf{6 0}$	2	250	4	600	9	$\mathbf{1 2 0 0}$	24		
80	2	300	5	700	13	1400	40		
100	2	350	5	800	15	1500	45		
125	2	400	6	900	17	1600	50		
150	3	450	6	1000	19	1800	60		
200	3	$\mathbf{5 0 0}$	7	1100	21	$\mathbf{2 0 0 0}$	71		

Angular deflection

Pipes must be connected together while keeping them perfectly aligned with their centerlines.

The joint must only be deflected when fully assembled and before pressurizing the system.

Maximum admissible deflection: STD pipes			
DN	$\Delta \theta\left(^{\circ}\right)$	L m	$\Delta \mathrm{d}(\mathrm{cm})$ for L
$\mathbf{6 0}$ to $\mathbf{3 0 0}$	5	6	52
$\mathbf{3 5 0}$ to $\mathbf{6 0 0}$	4	6	42
$\mathbf{7 0 0}$ to $\mathbf{1 0 0 0}$	4	7	49
$\mathbf{1 1 0 0}$ to $\mathbf{1 2 0 0}$	4	8	56
$\mathbf{1 4 0 0}$ to $\mathbf{1 6 0 0}$	3	8	42
$\mathbf{1 8 0 0}$	2.5	8	35
$\mathbf{2 0 0 0}$	2	8	28

Maximum admissible deflection: STD Vi/VILOK pipes

DN	$\Delta \theta\left(^{\circ}\right)$	$\mathrm{L} m$	$\Delta \mathrm{~d}(\mathrm{~cm})$ for L
$\mathbf{6 0}$ to $\mathbf{1 5 0}$	5	6	52
$\mathbf{2 0 0}$ to $\mathbf{2 5 0}$	4	6	42
$\mathbf{3 0 0}$ to $\mathbf{3 5 0}$	3	6	31
$\mathbf{4 0 0}$ to $\mathbf{6 0 0}$	2	6	21
$\mathbf{7 0 0}$	2	7	24

Express New joint / Express New Vi joint DN 60 to 150

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) CLEAN

Carefully clean the inside of the socket, the spigot and the gasket.

Keep all parts clean until assembly has been completed.

(2) LUBRICATE

Using a clean paintbrush, lubricate the inside of the socket, the inside of the gland and the gasket.

(3) MARK THE INSERTION DEPTH

Marking from the spigot $A=10 \mathrm{~cm}$ and $\mathrm{B}=2 \mathrm{~cm}$ with a tape measure or with the template provided.

After cutting a pipe, Express New and Express New Vi joints are directly fitted, no need to recreate the chamber on the spigot,
 a deburring is needed.
(4) MOUNT THE ELEMENTS ON THE SPIGOT

\triangleThe joint must be properly installed (gland position is specified)

Express New joint / Express New Vi joint

(5) ASSEMBLE THE ELEMENTS

Joint the socket and the spigot (with gland positon according to the mark)

ENSURE THE CORRECT DEPTH

6 TIGHTEN THE BOLTS

Tighten the bolts with a torque wrench in successive passes.

Bolt torque values:
-Pre-tightening: 2 daN.m

Express New joint / Express New Vi joint

Angular deflection

Values (for guidance only) for a 6-meter pipe from DN 60 to DN 150.
The pipe must be perfectly aligned with the fitting.
The pipe must be deflected after pre-tightening but before final tightening.
-Final tightening DN60 to DN150:
Express New 14 m.daN
Express New VI 10 m.DaN

Express New and Express New Vi bolts need to be tightened with a size 27 ring spanner.

(7) INFORMATION

Check that the nuts are tight:
-When installing several successive fittings

- After hydraulic testing

Re-tighten if necessary.

Failure to observe the tightening rules could lead to the risk of leaks.

Express joint

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) CLEAN

Carefully clean the inside of the socket, the spigot and the gasket.
Keep all parts clean until assembly has been completed.

(2) LUBRICATE

Using a clean paintbrush, lubricate the fitting's gasket groove and the inside of the gland.

(3) MARK THE INSERTION DEPTH

Introduce the spigot fully while ensuring that both parts are perfectly aligned.
Mark a line to represent the insertion depth.

Place the gasket approximately 10 mm from the line. It can be done easily by using light lubrification.

After cutting a pipe, Express joints can be mounted directly, i.e. there is no need to chamfer the spigot; only deburring is recommended.

Express joint

(4) MOUNT THE ELEMENTS

!
Position the beveled edge of the gasket towards the fitting's socket.

(5) ASSEMBLE

Slide the gasket onto the pipe barrel until properly seated and bring the gland into contact.
Ensure that the gland and gasket are perpendicular to the pipe centerline.
Insert the bolts and pre-tighten while keeping the joint in alignment.

(6) TIGHTEN THE BOLTS

Check the position of the gland.
Tighten the bolts with a torque wrench in successive passes as shown in the diagram.

Bolt torque values:
-DN 200 to 400: 12 daN.m $\varnothing 22$ bolts:
-DN 400 to 1200: 30 daN.m $\varnothing 27$ bolts:

Check that bolts are properly tightened before hydraulic testing. Re-tighten if necessary.

Comply with the insertion depths, otherwise the required angular deflection might not be achieved.

Tools required for tightening bolts:

- 022 : 30 spanner
- $027: 35$ spanner

Express joint

(7) INFORMATION

Angular deflection

Pipes must be connected together while keeping them perfectly aligned with their centerlines.
The pipe must be deflected after pre-tightening but before final tightening.

Maximum admissible deflection:			
DN	$\Delta \theta\left(^{\circ}\right)$	L m	$\Delta \mathrm{d}(\mathrm{cm})$ for L
$\mathbf{2 0 0}$ to $\mathbf{3 0 0}$	4°	6	42
$\mathbf{3 5 0}$ to $\mathbf{6 0 0}$	3°	6	32
$\mathbf{7 0 0}$ to $\mathbf{8 0 0}$	2°	7	25
$\mathbf{9 0 0}$ to $\mathbf{1 0 0 0}$	$1^{\circ} 5$	7	19
$\mathbf{1 0 0 0}$ to $\mathbf{1 2 0 0}$	$1^{\circ} 5$	8	21
$\mathbf{1 4 0 0}$	3°	8	42
$\mathbf{1 5 0 0}$ to $\mathbf{1 6 0 0}$	2°	8	28
$\mathbf{1 8 0 0}$	1.5°	8	21
$\mathbf{2 0 0 0}$	1°	8	14

UNIVERSAL Vi joint

Range of DN $\mathbf{8 0}$ to $\mathbf{6 0 0}$ pipes and fittings

This joint requires the use of UNIVERSAL STANDARD pipes featuring a double chamber socket to receive the:
-STANDARD gasket, which ensures a watertight seal
-UNIVERSAL Vi locking ring with inserts; the inserts anchor the assembly during interlocking.

(1) CLEAN

Carefully clean the inside of the socket, the spigot, the gasket and the locking ring.
Keep all parts clean until assembly has been completed.

(2) POSITION THE RINGS

The joint must be perfectly aligned during assembly.

(3) MARK THE INSERTION DEPTH

Mark the spigot if there is no original marking.

DN	$\mathbf{A}(\mathrm{mm})$	DN	$\mathbf{A}(\mathrm{mm})$	DN	$\mathbf{A}(\mathrm{mm})$	DN	$\mathbf{A}(\mathrm{mm})$
$\mathbf{8 0}$	147	$\mathbf{1 5 0}$	155	$\mathbf{3 0 0}$	187	$\mathbf{4 5 0}$	198
$\mathbf{1 0 0}$	147	$\mathbf{2 0 0}$	162	$\mathbf{3 5 0}$	192	$\mathbf{5 0 0}$	210
$\mathbf{1 2 5}$	147	$\mathbf{2 5 0}$	173	$\mathbf{4 0 0}$	186	$\mathbf{6 0 0}$	217

UNIVERSAL Vi joint

(4) LUBRICATE

Using the lubricant paste, coat the:

- Exposed side of the gasket
- Chamfer and spigot

(5) ASSEMBLE

Center and introduce the spigot into the perfectly aligned socket:
(a) Up to the line corresponding to $\mathbf{A}-\mathbf{2 0} \mathbf{~ m m}$ in case of a cut pipe or standard spigot
(b) Between the two lines if they are original markings on the Universal pipes

6 INFORMATION
Angular deflection

Maximum admissible deflection:			
DN	$\Delta \theta\left(^{\circ}\right)$	L m	$\Delta \mathrm{d}(\mathrm{cm})$ for L
$\mathbf{8 0}$ to $\mathbf{4 5 0}$	3°	5.95	32
$\mathbf{5 0 0}$	2°	5.97	21
$\mathbf{6 0 0}$	2°	5.97	21

UNIVERSAL Ve joint

This joint requires the use of UNIVERSAL STANDARD pipes featuring: -A weld bead on the spigot

- A double chamber socket to receive the STANDARD gasket and the UNIVERSAL Ve locking ring

(1) POSITION THE LOCKING RING

DN 100 to 200

Fit the locking ring into its groove.

Hold the locking ring in place with the mounting wedges.

UNIVERSAL Ve joint

DN 250 to 700

Fit the locking ring into its groove by reducing its external diameter using the appropriate tool.

Insert the wedge (sideways) between the end edge of the locking ring.
Twist by 90° to create a gap between the two ends.
Fold down the wedge against the face of the socket.

In both cases, place the opening of the locking ring at the top of the pipe (for easier removal).

DN 800 to 1600

Insert a connector at the end of a first segment on the flat side (internal).

Line up a pin (previously covered in
 lubricant paste) opposite its groove and point its inclined face like that of the connector.

Drive in the pin with a hammer and $\varnothing 3.9 \mathrm{~mm}$ punch.

To keep the tension evenly balanced in the elastomer connectors, proceed in the specified order.

UNIVERSAL Ve joint

Locking ring accessories according to DN

UNIVERSAL Ve joint

(2) INSERT THE GASKET

(3) LUBRICATE

Using the lubricant paste, coat the:

- Exposed side of the gasket
- Chamfer and spigot

(4) ASSEMBLE

The joint must be perfectly aligned during assembly.

Introduce the spigot in the locking ring and then remove the wedge (the weld bead is approximately 50 mm from the socket).

Introduce the spigot fully into the socket. When the locking ring is open, it opens when the weld bead passes through and then clamps to the barrel.

Check that the locking ring is not partially touching the weld bead due to insufficient insertion of the spigot or an excessive angular deflection.
Pull on each part of the locking ring with the mounting hook to ensure that it is properly positioned.

(5) EXTEND THE JOINT

Extend the joint by pulling the spigot out of the socket until the locking ring comes into contact with its groove in the socket.
To do so, use a collar fitted with hydraulic jacks or pull with the bucket of a digger using a suitable textile strap.

UNIVERSAL Ve joint

(6) CHECK THE POSITION OF THE LOCKING RING

Ensure that the full circumference of the metal locking ring is in contact with the pipe.
(7) INFORMATION

Angular deflection

DN	Angular deflection	Displacement $\Delta \mathbf{d}$ for L	\mathbf{L}
	degree	cm	m
$\mathbf{1 0 0}$	3°	32	
$\mathbf{1 2 5}$	3°	32	
$\mathbf{1 5 0}$	3°	32	
$\mathbf{2 0 0}$	3°	32	
$\mathbf{2 5 0}$	3°	32	
$\mathbf{3 0 0}$	3°	32	5.97
$\mathbf{3 5 0}$	3°	32	
$\mathbf{4 0 0}$	3°	32	
$\mathbf{4 5 0}$	3°	32	
$\mathbf{5 0 0}$	2°	21	
$\mathbf{6 0 0}$	2°	21	
$\mathbf{7 0 0}$	2°	21	6.89
$\mathbf{8 0 0}$	2°	25	6.87
900	1.5°	18	6.88
$\mathbf{1 0 0 0}$	1.2°	15	8.15
$\mathbf{1 2 0 0}$	1.1°	15	8.08
$\mathbf{1 4 0 0}$	0.8°	10	
$\mathbf{1 6 0 0}$	0.5°	7	

Standard Ve joint

Range of DN 80 to 1200 pipes and fittings

This joint requires a:
-Standard pipe with a weld bead on the spigot

- Standard VE gland
-Standard VE locking ring
-Standard gasket
Standard gland

Standard VE locking ring: one-piece or segmented

One-piece: DN 250 to 700

The one-piece locking ring is an open ring

Segment: DN 80 to 200

The locking ring is supplied preassembled

Segment to be assembled: DN 800 to 1200

艮艮
Insert a connector at the end of a first segment on the flat side (internal).

Line up a pin (previously covered in lubricant
 paste) opposite its groove and point its inclined face like that of the connector.

Drive in the pin with a hammer and $\varnothing 3.9 \mathrm{~mm}$ punch.

Standard Ve joint

(1) POSITION THE GLAND AND LOCKING RING

Slide the gland and locking ring over the weld bead.

To pass the locking ring over the weld bead.

Pass the ring over the weld bead using a crowbar or similar tool

(2) MARK THE INSERTION DEPTH

DN	a (mm)	
$\mathbf{8 0}$ to $\mathbf{1 2 5}$	20	Measure and
$\mathbf{1 5 0}$ to 200	25	mark from the
$\mathbf{2 5 0}$ to $\mathbf{5 0 0}$	30	weld bead
$\mathbf{6 0 0}$ to 1100	35	according to
$\mathbf{1 2 0 0}$	25	dimension "a"

(3) CLEAN

Carefully clean the inside of the socket, the spigot and the gasket.

Keep all parts clean until assembly has been completed.

Standard Ve joint

(4) POSITION AND CHECK THE GASKET

Wrong

(5) LUBRICATE

Using the lubricant paste, coat the:

- Exposed side of the gasket
- Chamfer and spigot

Right

(6) ASSEMBLE

Center and introduce the spigot into the perfectly aligned socket up to the line corresponding to "a":

(1) CHECK THE ASSEMBLY

The metal rule must enter the same depth all the way around the circumference.

8 POSITION THE LOCKING RING

Move the locking ring forward until it comes into contact with the weld bead. Check that it is touching the weld bead around the entire circumference of the spigot.

Standard Ve joint

(9) POSITION THE GLAND

Position the gland so that it is in contact with the locking ring.
Insert the bolts and nuts.
Screw by hand until in contact with the gland.
Tighten the bolts diagonally until the gland touches the socket face.

Iron nuts and bolts
DN 80 to 1200

Steel nuts and bolts
DN800 to 1200 (16 bar < PFA 25 bar)

Tighten the bolts in the order indicated in the diagram opposite and according to the recommended torque values.

DN	Torque (daN.m)	spanner type and \varnothing
$\mathbf{8 0}$ to $\mathbf{2 0 0}$	12	$\varnothing 22: 30$ spanner
$\mathbf{2 0 0}$ to $\mathbf{6 0 0}$	30	$\varnothing 27: 36$ spanner
$\mathbf{7 0 0}$ to $\mathbf{1 2 0 0}$		

10 INFORMATION

Angular deflection

DN	$\Delta \theta\left(^{\circ}\right)$	L m	$\Delta d(\mathrm{~cm})$ for L
$\mathbf{6 0}$ to $\mathbf{1 5 0}$	5°	6	52
$\mathbf{2 0 0}$ to $\mathbf{3 0 0}$	4°	6	42
$\mathbf{3 5 0}$ to $\mathbf{6 0 0}$	3°	6	32
$\mathbf{7 0 0}$ and $\mathbf{8 0 0}$	2°	7	25
$\mathbf{9 0 0}$ and $\mathbf{1 0 0 0}$	1.5°	7	19
$\mathbf{1 1 0 0}$ and $\mathbf{1 2 0 0}$	1.5°	8	21

TAG /IM joint

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

Using the marking as a reference, check that the gasket is suited to the project specifications:
-DN

- Material:
-For sewage: NBR + yellow marking (stripes or dots)
-Storage life: seven years for NBR (sewage) subject to optimal storage conditions (contact us for our recommendations)

(1) CLEAN

Carefully clean the inside of the socket, the spigot and the gasket.
Keep all parts clean until assembly has been completed.

(2) INSERT THE IM GASKET

Insert the gasket before the pipe is laid in the trench.

Always use the IM gasket, since the STANDARD gasket is incompatible with TAG pipes.

(3) CHECK THE JOINT

Ensure that the gasket is properly seated in its groove.

TAG/IM joint

4) MARK THE INSERTION DEPTH

(if there is no original marking, i.e. if the pipe has been cut or a spigot is used from a different range).

Mark the spigot at a distance of $\mathrm{P}-\mathrm{J} \mathrm{mm}$.

DN (mm)	$\mathbf{P}(\mathrm{mm})$	$\mathbf{J}(\mathrm{mm})$	P-J (mm)
$\mathbf{1 5 0}$	98	15	83
$\mathbf{2 0 0}$	104	15	89
$\mathbf{2 5 0}$	104	15	89
$\mathbf{3 0 0}$	105	15	90

(5) LUBRICATE

Coat:

-The exposed surface of the gasket
-The pipe chamfer and spigot

Apply a sufficient amount of lubricant paste with a paintbrush (refer to the quantities table).

Comply with the recommended applications specified in the safety data sheets available in the Downloads section on www.pamline.com.

(6) ASSEMBLE

Center and introduce the spigot into the perfectly aligned socket:
(a) Up to the marked line corresponding to "P-J mm"
(b) Up to the area between the white lines

TAG /IM joint

(7) INFORMATION

Cuts and chamfers

Treating a cut pipe
Apply the appropriate paint: ISOLARM 671-50 ref. 179099.
Refer to the instructions for cutting pipes.
Lubricant paste

Number of boxes for 100 joints			
DN	No.	DN	No.
$\mathbf{1 2 5}$	2	$\mathbf{2 5 0}$	4
150	3	$\mathbf{3 0 0}$	5
$\mathbf{2 0 0}$	3		

Angular deflection

Pipes must be connected together while keeping them perfectly aligned with their axes.
The joint must only be deflected when fully assembled and before pressurizing the system.

Maximum admissible deflection:			
DN	$\Delta \theta\left({ }^{\circ}\right)$	L m	$\Delta \mathbf{d}(\mathrm{cm})$ for L
$\mathbf{1 2 5}$ to $\mathbf{3 0 0}$	4	6	42

Flanged joint

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).
(1) METAL-REINFORCED GASKETS

(2) CLEAN AND ALIGN THE FLANGES

-Check the appearance and cleanliness of the flange and flange gasket

- Align the parts to be mounted.
- Leave a large enough gap for the flange gasket between the two flanges.

Flange gasket thickness:
DN ≤ 300 : $10 \mathrm{~mm} ; \mathrm{DN} \geq 300$: 16 mm

Flanged joint

(3) POSITION THE REINFORCED GASKET

Center the reinforced gasket according to the method specified in the tables:
DN

Flanged joint

(4) TIGHTEN THE BOLTS

Insert the bolts.
Tighten the bolts in the order indicated in the diagram opposite and according to the recommended torque values.

\triangle
Do not exert any tractive force on the junction when tightening the bolts.

(5) COMPLY WITH THE TIGHTENING TORQUE VALUES

The recommended torque values are for greased threads (mechanical grease).
The bolts are only tightened to compress the reinforced gasket and not exert any tractive force on the pipeline elements.

Metal-reinforced gasket					
	Bolt tightening torque values for flanges				
DN	PN 10	PN 16	PN 25	PN 40	PN 63
	daN.m	daN.m	daN.m	daN.m	daN.m
40	4	4	4	4	4
50	4	4	4	4	4
60	4	4	4	4	6
65	4	4	4	4	6
80	4	4	4	4	6
100	4	4	6	6	8
125	4	4	8	8	12
150	6	6	8	8	15
200	6	6	8	12	18
250	6	8	12	15	18
300	6	8	12	15	18
350	6	8	15	18	30
400	8	12	18	30	40
450	8	12	18	30	
500	8	15	18	40	50
600	12	18	30	50	
700	12	18	40	60	
800	15	30	50		
900	15	30	50		
1000	18	40	60		
1100	18	40	60		
1200	30	50	60		
1400	40	50	70		
1500	40	60	70		
1600	50	60	70		
1800	50	60	80		
2000	50	70	80		

Flanged joint

6 SOCKET DIMENSIONS

DN	PN 10		PN 16		PN 25	
	Bolt	Socket	Bolt	Socket	Bolt	Socket
$\mathbf{4 0}$	M16	24	M16	24	M16	24
$\mathbf{5 0}$	M16	24	M16	24	M16	24
$\mathbf{6 0}$	M16	24	M16	24	M16	24
$\mathbf{6 5}$	M16	24	M16	24	M16	24
$\mathbf{8 0}$	M16	24	M16	24	M16	24
$\mathbf{1 0 0}$	M16	24	M16	24	M20	30
$\mathbf{1 2 5}$	M16	24	M16	24	M24	36
$\mathbf{1 5 0}$	M20	30	M20	30	M24	36
$\mathbf{2 0 0}$	M20	30	M20	30	M24	36
$\mathbf{2 5 0}$	M20	30	M24	36	M27	41
$\mathbf{3 0 0}$	M20	30	M24	36	M27	41
$\mathbf{3 5 0}$	M20	30	M24	36	M30	46
$\mathbf{4 0 0}$	M24	36	M27	41	M33	50
$\mathbf{4 5 0}$	M24	36	M27	41	M33	50
$\mathbf{5 0 0}$	M24	36	M30	46	M33	50
$\mathbf{6 0 0}$	M27	41	M33	50	M36	55
$\mathbf{7 0 0}$	M27	41	M33	50	M39	60
$\mathbf{8 0 0}$	M30	46	M36	55	M45	70
$\mathbf{9 0 0}$	M30	46	M36	55	M45	70
$\mathbf{1 0 0 0}$	M33	50	M39	60	M52	80
$\mathbf{1 1 0 0}$	M33	50	M39	60	M52	80
$\mathbf{1 2 0 0}$	M36	55	M45	70	M52	80
$\mathbf{1 4 0 0}$	M39	60	M45	70	M56	85
$\mathbf{1 5 0 0}$	M39	60	M52	80	M56	85
$\mathbf{1 6 0 0}$	M45	70	M52	80	M56	85
$\mathbf{1 8 0 0}$	M45	70	M52	80	M64	95
$\mathbf{2 0 0 0}$	M45	70	M56	85	M64	95
$\mathbf{7}$						

Assembly equipment

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) CROWBAR

Pipes and fittings - DN 125

(2) BI DN ASSEMBLY EQUIPMENT

Standard Natural / Integral pipes and fittings
DN 100-125, DN 150-200, DN 250-300

1- Place the socket frame behind the
 socket of the installed pipe and slide until touching as shown by the arrow.

2-Put the lever in the lower position and then move the grip section using the handle so that the four grips are correctly positioned against the pipe.

3-Stand so that you are facing the socket and firmly pull the lever towards you in the direction shown by the arrow until the lever is in the lower position.

4-If necessary, repeat the procedure from step three until both pipes are totally interlocking.

Comply with the insertion depth

Assembly equipment

Universal Natural / Integral pipes and fittings

Attach the collar to the spigot.
Pre-tighten with a spanner.
Position the cams by turning them towards the spigot.
Attach the collar to the pipe's socket. Run the chain beneath the spigot and socket.

Tighten.

Connect the collar links to the cams on the barrel collar.
Use the levers to tension the assembly.
Once the collars are correctly positioned, tighten as necessary.
Position the two levers on the cam nuts of the barrel collar as shown. Pull both levers together at the same time.
Join the pipes according to the depth lines indicated on the spigot of each pipe.

Comply with the insertion depth

Blutop / Topaz pipes and fittings DN 75, 90, 110, 125, 140, 160
Attach the collar to the spigot.
Pre-tighten with a spanner.
Position the cams by turning them towards the spigot.
Attach the collar to the pipe's socket.
Bring the two half-collars together, so that the junction between both parts is located by the pipe's assembly crown.
Pre-tighten with a size 4 hex key.
Connect the collar links to the cams on the
 barrel collar.
Use the levers to tension the assembly.
Once the collars are correctly positioned, tighten as necessary.
Position the two levers on the cam nuts of the barrel collar as shown. Pull both levers together at the same time.
Join the pipes according to the depth lines indicated on the spigot of each pipe.

Assembly equipment

3 MULTI DN ASSEMBLY EQUIPMENT

Blutop / Topaz pipes and fittings DN 75 to 160

Set the fork gap to the relevant diameter (behind the socket). Tighten with a size 24 spanner.

Pass the strap provided around the pipe barrel, but without tightening.

Place the tool with the fork pointing straight up behind the fitting (or pipe) collar.

Attach the strap to [A].
Keep the lever [B] upright.
Fasten the strap at [C] so that it is wrapped tightly around the pipe.

Pull the lever as shown in [D] and assemble while ensuring that the fitting (or pipe) is aligned with the centerline.

Deflect after assembly if necessary (maximum deflection of 6°).

Check that the gasket is properly positioned using the metal rule supplied in the Blutop or Topaz joint box.

Assembly equipment

Pipes and fittings with non-restrained joints or anchored joints (Blutop Vi, Standard Vi and Universal Vi)

DN Blutop/Topaz	\qquad	Number	Pipe / Fitting Ratchet chain winch	Number
WITH FLAT STRAPS 2 t Chain length 2 m				
125	750 kg	1	750 kg	1
140	--	--	250 kg	2
150	750 kg	1	750 kg	1
160	--	--	250 kg	2
200	1500 kg	1	1500 kg	2
250	1500 kg	1	1500 kg	2
300	1500 kg	2	1500 kg	2
350	1500 kg	2	1500 kg	3

WITH FLAT STRAPS 3 t Chain length 3 m

$\mathbf{4 0 0}$	1500 kg	2	1500 kg	3
$\mathbf{4 5 0}$	1500 kg	2	1500 kg	3
$\mathbf{5 0 0}$	1500 kg	2	1500 kg	3
$\mathbf{6 0 0}$	3000 kg	2	1500 kg	3
$\mathbf{7 0 0}$	3000 kg	2	3000 kg	2
$\mathbf{8 0 0}$	3000 kg	2	3000 kg	2
	WITH FLAT STRAPS 6t Chain length 5 m			
$\mathbf{9 0 0}$	6000 kg	2	6000 kg	3
$\mathbf{1 0 0 0}$	6000 kg	2	6000 kg	3
$\mathbf{1 1 0 0}$	6000 kg	2	6000 kg	3
$\mathbf{1 2 0 0}$	6000 kg	2	6000 kg	3

WITH FLAT STRAPS 8t Chain length 6 m

$\mathbf{1 4 0 0}$	6000 kg	3	6000 kg	3
$\mathbf{1 5 0 0}$	6000 kg	3	6000 kg	3
$\mathbf{1 6 0 0}$	6000 kg	3	6000 kg	3
$\mathbf{1 8 0 0}$	6000 kg	3	6000 kg	3
$\mathbf{2 0 0 0}$	6000 kg	3	6000 kg	3

4
These values are provided for guidance only and may vary according to the installation conditions (temperature, lubrication, assembly of cut sections, etc.).

Assembly equipment

Ratchet chain winches

(4) ACCESSORIES

Flat textile straps

Color	Max. load	Length	Reference
Purple	1.5 t	2 m	158511
Green	2 t	2 m	158512
		8 m	158380
Yellow	3 t	3 m	158514
		4 m	158515
Gray	4 t	5 m	158516
Red	5 m	8 m	158517
Brown	6 t	6 m	219996
		5 m	158388
Blue	8 t	4 m	158519
		7 m	198383
		10 m	199201

!
To recognize the straps, count the number of seams
(e.g. 3 seams $=3 \mathrm{t}$).

Hooks for connecting pipes

$\mathbf{6 0}$ to $\mathbf{3 0 0}$	Visual	Reference
$\mathbf{3 5 0}$ to $\mathbf{6 0 0}$	158021	
$\mathbf{7 0 0}$ to $\mathbf{1 2 0 0}$	158025	
$\mathbf{1 4 0 0}$ to		
$\mathbf{2 0 0 0}$		158026

Assembly equipment

5 DIGGER BUCKET DN 125 AND OVER

Insert a wooden batten between the bucket and the pipe.

Pipe cutting

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) EQUIPMENT AND TOOLS REQUIRED

-Gloves, protective mask and goggles
-Brush, abrasive paper and cutter
-Paintbrushes, roller
-Gas burner

(2) CHECK THE EXTERNAL DIAMETER

Before cutting, use a circometer to check that the OD measured is less than the OD +1 mm (see table below).

DN	OD mm						
$\mathbf{6 0}$	77	$\mathbf{2 5 0}$	274	$\mathbf{6 0 0}$	635	$\mathbf{1 2 0 0}$	1255
$\mathbf{8 0}$	98	$\mathbf{3 0 0}$	326	$\mathbf{7 0 0}$	738	$\mathbf{1 4 0 0}$	1462
$\mathbf{1 0 0}$	118	$\mathbf{3 5 0}$	378	$\mathbf{8 0 0}$	842	$\mathbf{1 5 0 0}$	1565
$\mathbf{1 2 5}$	144	$\mathbf{4 0 0}$	429	$\mathbf{9 0 0}$	945	$\mathbf{1 6 0 0}$	1668
$\mathbf{1 5 0}$	170	$\mathbf{4 5 0}$	480	$\mathbf{1 0 0 0}$	1048	$\mathbf{1 8 0 0}$	1857
$\mathbf{2 0 0}$	222	$\mathbf{5 0 0}$	532	$\mathbf{1 1 0 0}$	1151	$\mathbf{2 0 0 0}$	$\mathbf{2 0 8 2}$

DN $\leq 300 \mathrm{~mm}$: preferably cut within 4 m of the spigot.
DN $\geq \mathbf{3 5 0} \mathbf{~ m m}$: preferably cut pipes that have been calibrated (to be specified when ordering). These pipes are marked with metallic gray paint on the socket face.

For Blutop and Topaz: DN/OD = outer diameter.

(3) DRAW THE CUTTING LINE

Draw the cutting plane perpendicular to the pipe centerline.

Pipe cutting

4) CUTTING

DN 60 to 300: cut the pipe with an electric, heat or manual pipe cutting machine.

DN 350 to 700 : use a cut-off saw or chainsaw.

DN \geq 700: use a compressed air saw (e.g. FEIN) with a special attachment for chamfering the pipe.

(5) CUTTING SPECIAL COATINGS
|TT PE AND
TT PUX PIPES

Draw the cutting marks (CPe) according to the following table:

DN	STANDARD TT pipe	UNIVERSAL TT pipe
	95	mm
$\mathbf{6 0}$	100	NK
$\mathbf{1 0 0}$ and $\mathbf{1 5 0}$	105	NK
$\mathbf{2 0 0}$ and $\mathbf{2 5 0}$	115	NK
$\mathbf{3 0 0}$	120	NK
$\mathbf{3 5 0}$ and $\mathbf{4 0 0}$	120	NK
$\mathbf{4 5 0}$ and $\mathbf{5 0 0}$	125	205
$\mathbf{6 0 0}$ and $\mathbf{7 0 0}$	NK	225

Pipe cutting

Cut the PE/PUX coating with a cutter through to the iron, but without damaging the iron.
Make a lengthwise cut to strip off the PE.

Preheat the area to be cut from the inside. Max $50^{\circ} \mathrm{C}$.

|ZMU PIPES

Draw the cutting marks (L) according to the following table:

	DN	80	100	125	150	200	250	300	350	400	500	600	700
TYT / STD /TYT-SIT PLUS/ STD VI	L	95	100	105	110	115		120	130	145	225		
UNIVERSAL	L	130	155	170	165	170	180	195	225	190	215	230	265

Cut away the cement without damaging the iron. You can use a special disc with a 5 mm shoulder (ref.185104).

Preheat the area between the cuts in the cement coating. Max $50^{\circ} \mathrm{C}$. Create a lengthwise cut with a chisel.

Pipe cutting

Remove the cement coating with a small hammer and chip off any cement traces with a chisel.

Repair the cement coating with kit ref. 18842 (refer to the "Repair products" guide).

|ISOPAM PIPES

Draw the cutting area according to the following table:

DN	Insulation to be removed A (mm)	DN	Insulation to be removed A (mm)
$\mathbf{1 0 0}$	97	$\mathbf{3 0 0}$	130
$\mathbf{1 2 5}$	100	$\mathbf{3 5 0}$	148
$\mathbf{1 5 0}$	103	$\mathbf{4 0 0}$	150
$\mathbf{2 0 0}$	109	$\mathbf{5 0 0}$	155
$\mathbf{2 5 0}$	108	$\mathbf{6 0 0}$	Contact us

Cut the polyethylene coating and insulation (be careful not to cut into the iron).
Remove the insulation and properly clean the spigot.

6 DEBURRING AND CHAMFERING

For mechanical joints (EXPRESS, COLLARS, etc.), deburr the cut edge with a grinder.

For push-in joints (STANDARD, STANDARD Vi, ViLok, UNIVERSAL Vi and UNIVERSAL Ve):

Pipe cutting

For Blutop, Blutop Vi, Topaz and Topaz Vijoints:

For Blutop and Topaz pipes, remember to use the bluCut machine, which is capable of cutting and chamfering the pipe at the same time.

7 REPAIR THE EXPOSED IRON

Repair the protective coating on the exposed face and chamfer.

Brush to remove any dirt or loose particles.
Dry the surfaces to be coated (in case of low temperatures or high humidity, use a gas burner).
Apply high-zinc anticorrosion primer NATZINC (ref. 251222) with a paintbrush. Allow to dry for a few minutes.
Apply the appropriate paint for the pipe coating:

Type of coating	Repair product
Natural / Blutop	AQUACOAT
Integral	EUROKOTE 4820 Red Brown 1 kg dose, ref. 184653
TAG 32	ISOLARM 671-50 ref. 179099
Classic / Standard TT / Standard TT	ENDOLAC 245-30 FGC
PUX / Isopam / ZMU	1 kg dose, ref. 158134

Also refer to the "Repair products" guide.

Pipe cutting

|PH1 AND TOPAZ PIPES

Ask for Topaz repair kit ref. 250714.

Clean the surface to be coated.
Brush or rub with abrasive paper.
Remove any dust with a cloth.
Clean the inside of the pipe: after cutting, ensure that there are no filings inside the pipe.
Preheat the surface with successive sweeps across the entire surface with a brazing torch (2 min). Maximum temperature: $50^{\circ} \mathrm{C}$.
Apply an initial coat of EUROKOTE 4820 paint ref. 184653 (1 kg dose) or 220817 (kit of five 50 ml syringes).
Gently heat the surface for three minutes after application to accelerate the drying time.
As soon as the first coat is tacky to the touch, apply the second coat of EUROKOTE 4820 paint.
Heat the surface for five minutes after applying the paint to dry it completely (the coat is dry to the touch without leaving any prints).

Thickness after two coats: $250 \mu \mathrm{~m}$
Check with a circometer (Topaz):

DN	Max. OD after repair	Max. OD before cutting
	mm	mm
$\mathbf{7 5}$	75.9	75.5
$\mathbf{9 0}$	90.9	90.5
$\mathbf{1 1 0}$	111.0	110.6
$\mathbf{1 2 5}$	126.1	125.7
$\mathbf{1 4 0}$	141.2	140.8

8REPAIRING SPECIAL COATINGS

|TT PE PIPES

Clean the surface to be coated.
Brush or rub with abrasive paper.
Remove any dust with a cloth.
Apply a coat of paint (refer to the "Repair products" guide).
Allow to dry.

Pipe cutting

|TT PUX PIPES

Clean the surface to be coated.
Brush or rub with abrasive paper.
Remove any dust with a cloth.
Apply an initial coat of paint with a paintbrush (refer to the "Repair products" guide) by covering the end of the spigot and beyond the chamfer by overlapping the cement.

Gently heat the surface for three minutes after application to accelerate the drying time.
As soon as the first coat is tacky to the touch, apply the second coat of paint.

|ISOPAM PIPES

After assembling the junction, cover the exposed area with a foam spacer. Joint the renovated part and the pipe coating using Impermastic sealing tape. Cover the entire surface with a protective sleeve.

|PUR PIPES

Thoroughly water the pipe while cutting.
Clean the surface to be coated.
Brush or rub with abrasive paper.
Remove any dust with a cloth.
Apply an initial coat of paint with a paintbrush or spatula in case of a small surface area (refer to the "Repair products" guide) by covering the end of the spigot and beyond the chamfer by overlapping the interior polyurethane.

Gently heat the surface for three minutes after application to accelerate the drying time.

Locking weld bead on site

Creating the weld bead

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) REQUIRED EQUIPMENT

- Electric welding machine with a minimum capacity of 150 amperes.
-Electric or pneumatic grinder.
- Copper guide in accordance with the table on the next page.
-Recommended electrodes: ferro-nickel electrodes - $\varnothing 3.2 \mathrm{~mm}$ Solid wire: FeNi alloy with 55% Ni according to ISO 1071. Electrode grades are available as SC Ni Fe1 and SC Ni Fe2.
-Ref. 1581795 kg box of electrodes (160 electrodes).

2 SURFACE PREPARATION

Draw the position of the bead using the copper guide while complying with dimension a.

Prepare the surface to be welded by lightly grinding (i.e. grinding all coatings without affecting the thickness of the iron) over a strip of approximately 50 mm .

Position the copper guide ahead of the weld while complying with dimension a. The guide must fit snugly around the whole circumference of the pipe. Tap with a hammer if necessary.

3 DEPOSIT THE LOCKING WELD BEAD

Weld against the guide to obtain a flat vertical face at right angles to the pipe's surface.

Preferably work the weld between marks A and B by turning the pipe.
The electrode must be positioned at an angle of 5°.
Number of passes: refer to the table on the following page.
Caution: the height of the copper guide does not correspond to the height of the weld bead (refer to the table on the following page).

Locking weld bead on site

(4) REPAIRING THE EXTERNAL COATING

Brush the welded area.

Apply paint with a paintbrush in moderation to avoid attenuating the vertical face of the weld bead on the pipe.

Paint reference:

Each product range has its dedicated line of repair products - refer to the "External coating repairs" guide.

Comply with the recommended applications specified in the safety data sheets available in the Downloads section on www.pamline.com.

	DN	$a+/-3 \mathrm{~mm}$	$\mathrm{b}+/-1.5 \mathrm{~mm}$	$\mathrm{d}+/-0.5 \mathrm{~mm}$	$\mathrm{c}+/-0.5 \mathrm{~mm}$	No. of passes
STD-VE \& UNI VE (1)	80	85	6.5	-	3.5	1
	100	90				
	125	95				
	150	95				
	200	100				
	250	110				
	300	115				
	350	115	7.5	-	4	
	400	113				
	450	120				
	500	125			4.5	
	600	135				
	700	158				
STD-VE \& UNI VE (2)	DN	a $+/-2 \mathrm{~mm}$	b $+/-0.5 \mathrm{~mm}$	d $+/-1 \mathrm{~mm}$	c $+0.5 /-0.8 \mathrm{~mm}$	
	800	150	5	9	5	1
	900	155				
	1000	165				
	1100	165				
	1200	170				
UNI VE (2)	DN	$a+/-2 \mathrm{~mm}$	$\mathrm{b}+$ - 1 mm	d +/-1 mm	c + $0.5 /-0.8$	
	1400 1500	190 192	8	14	6	1
	1600	195				
$\begin{gathered} \text { PAMLOCK } \\ \text { (2) } \end{gathered}$	DN	a $+3 /-2 \mathrm{~mm}$	$\mathrm{b}+/-1 \mathrm{~mm}$	d +/-2 mm	$\mathrm{c}+3 /-1 \mathrm{~mm}$	
	1400	170	8	17	8	1
	1500	180				
	1600	195				
	DN	a $+3 /-2 \mathrm{~mm}$	$\mathrm{b}+\mathrm{-}$ 1 mm	$\mathrm{d}+/-2 \mathrm{~mm}$	$\mathrm{c}+/-1 \mathrm{~mm}$	
	$\begin{aligned} & 1800 \\ & 2000 \end{aligned}$	$\begin{aligned} & 222 \\ & 243 \end{aligned}$	16	25	11	1

Locking weld bead on site

Copper guide details
Once created, the weld bead must be inspected using the appropriate means.

DN	D	e	b	WEIGHT
80	96			0.72
100	116			0.75
125	142		25	0.84
150	168			0.94
200	220			1.12
250	271			1.81
300	323			2.06
350	375		35	2.32
400	427	5	35	2.58
450	477			2.82
500	528			3.07
600	631			5.1
700	734			5.82
800	837			5.62
900	940		50	7.27
1000	1043			7.99
1100	1140			8.67
1200	1249			9.44
1400	1455			34.3
1500	1558			36.6
1600	1661	10	80	39
1800	1868			43.6
2000	2073			48.2

Estimated time for producing a locking weld bead

DN	No. electrodes	Grinding time	Welding time	Total time
80	3 to 4	4 min	9 min	20 min
100	4 to 5	5 min	11 min	25 min
125	5 to 6	5 min	13 min	30 min
150	6 to 7	6 min	16 min	35 min
200	8 to 9	6 min	20 min	40 min
250	10 to 11	6 min	25 min	50 min
300	12 to 14	7 min	30 min	1 hr
350	14 to 16	8 min	35 min	1 hr 5 min
400	16 to 18	9 min	40 min	1 hr 15 min
450	18 to 20	10 min	45 min	1 hr 30 min
500	20 to 22	11 min	50 min	1 hr 35 min
600	23 to 27	13 min	1 hr	1 hr 50 min
700	27 to 31	15 min	1 hr 10 min	2 hr 10 min
800	31 to 36	18 min	1 hr 20 min	2 hr 25 min
900	35 to 40	20 min	1 hr 30 min	2 hr 40 min
1000	39 to 45	22 min	1 hr 40 min	2 hr 55 min
1100	43 to 49	24 min	1 hr 50 min	3 hr 10 min
1200	47 to 54	26 min	2 hr	3 hr 30 min
1400	55 to 62	31 min	2 hr 20 min	4 hr
1500	59 to 67	33 min	2 hr 30 min	4 hr 20 min
1600	62 to 71	35 min	2 hr 40 min	4 hr 40 min
1800	70 to 80	40 min	3 hr	5 hr 10 min
2000	78 to 89	44 min	3 hr 10 min	5 hr 50 min

Grinding and welding times are given for guidance only. Times may vary according to worksite conditions.

Anchor blocks

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).
All the values contained in this document are provided by SAINT-GOBAIN PAM for guidance only. They are no substitute for carrying out prior studies or enlisting the services of a consultant.

(1) CONSTRUCTION RECOMMENDATIONS

The concrete anchor blocks presented hereinafter have been designed for the most frequently encountered types of soil and laying conditions.
If the laying conditions are not covered by the following tables, contact SAINT-GOBAIN PAM.

It is important to cast the concrete directly against the surrounding soil and use a concrete mix offering adequate strength.

!When designing the anchor blocks, do not forget to leave the gaskets exposed for inspection during subsequent hydraulic testing.

Caution! Never excavate in the immediate vicinity of an anchor block restraining thrust without having taken the precaution of sufficiently reducing the pressure in the main during work.

Anchor blocks

(2) ANCHOR BLOCK DIMENSIONS

Soil with HIGH mechanical strength
-Internal friction: $\phi=40^{\circ}$

- Soil strength: $\sigma=0.6 \mathrm{daN} / \mathrm{cm}^{2}$
- Mass density: $\gamma=2 \mathrm{t} / \mathrm{m}^{3}$
- Height of cover: $\mathbf{H}=1 \mathrm{~m}$
- No groundwater

Soil with high mechanical strength						
DN	Test pressure	$\begin{aligned} & 1 / 32 \text { bend } \\ & \mathrm{w} \text { x h / } \mathrm{V} \end{aligned}$	1/16 bend wxh/v	$1 / 8$ bend wxh/V	1/4 bend wxh/V	Blank flange and tee wxh/V
	bar	$\mathrm{m} \times \mathrm{m} / \mathrm{m}^{3}$	$\mathrm{m} \times \mathrm{m} / \mathrm{m}^{3}$		$\mathrm{m} \times \mathrm{m} / \mathrm{m}^{3}$	
60	10	$0.07 \times 0.16 / 0.01$	$0.14 \times 0.16 / 0.02$	0.17x0.26/0.02	0.31x0.26/0.04	$0.22 \times 0.26 / 0.03$
	16	. 02	0.14x0.26/0.02	0.27x0.26/0.04	0.48x0.26/0.07	0.35x0.26/0.04
	25	$0.17 \times 0.16 / 0.03$	0.22x0.26/0.03	0.41x0.26/0.05	0.71×0.26/0.14	. 08
80	10	0.1x0.18/0.02	$0.20 \times 0.18 / 0.04$	0.25x0.28/0.04	0.45x0.28/0.07	$0.33 \times 0.28 / 0.05$
	16	$0.16 \times 0.18 / 0.03$	0.21x0.28/0.03	0.39x0.28/0.06	$0.68 \times 0.28 / 0.14$	$0.50 \times 0.28 / 0.08$
	2	0.1	0.32x0.28/0.04	0.59x0.28/0.11	$1.00 \times 0.28 / 0.31$	17
100	10	$0.13 \times 0.20 / 0.03$	0.18x0.30/0.03	0.33x0.30/0.05	0.58x0.30/0.11	0.43x0.30/0.07
	16	$0.20 \times 0.20 / 0.05$	0.28x0.30/0.05	0.51x0.30/0.1	0.88x0.30/0.25	0.65x0.30/0.14
	25	$0.22 \times 0.30 / 0.04$	0.42x0.30/0.07	0.76x0.30/0.19	$1.03 \times 0.40 / 0.47$	$0.95 \times 0.30 / 0.30$
125	10	$0.17 \times 0.22 / 0.04$	0.24x0.33/0.05	0.44x0.33/0.09	0.76x0.33/0.21	$0.56 \times 0.33 / 0.13$
	16	$0.19 \times 0.33 / 0.04$	0.37x0.33/0.07\|	0.67x0.33/0.16	0.94x0.43/0.41	0.85x0.33/0.26
	25	$0.29 \times 0.33 / 0.06$	$0.55 \times 0.33 / 0.12$	0.99x0.33/0.35	$1.35 \times 0.43 / 0.85$	$1.02 \times 0.43 / 0.49$
150	10	$0.21 \times 0.25 / 0.06$	0.3x0.35/0.07	0.55x0.35/0.14	0.79x0.45/0.31	$0.70 \times 0.35 / 0.19$
	16	$0.24 \times 0.35 / 0.05$	0.46x0.35/0.11	0.83x0.35/0.27	1.17x0.45/0.67	0.88×0.45/0.38
	25	$0.37 \times 0.35 / 0.09$	0.69x0.35/0.19	$1.02 \times 0.45 / 0.51$	1.66x0.45/1.37	$1.27 \times 0.45 / 0.79$
200	10	$0.28 \times 0.30 / 0.10$	0.42x0.40/0.14	0.66x0.50/0.24	$1.11 \times 0.50 / 0.68$	0.83x0.50/0.38
	16	$0.35 \times 0.40 / 0.11$	0.65x0.40/0.22	0.99x0.50/0.53	$1.44 \times 0.60 / 1.37$	$1.23 \times 0.50 / 0.83$
	25	$0.52 \times 0.40 / 0.16$	0.81x0.50/0.36	$1.42 \times 0.50 / 1.11$	2.03x0.60/2.72	$1.56 \times 0.60 / 1.61$
250	10	$0.35 \times 0.35 / 0.16$	0.55x0.45/0.22	0.86x0.55/0.45	$1.28 \times 0.65 / 1.18$	$1.08 \times 0.55 / 0.7$
	16	0.	$0.72 \times 0.55 / 0.31$	1.27x0.55/0.98	1.71x0.75/2.4	$1.42 \times 0.65 / 1.43$
	25	$0.58 \times 0.55 / 0.20$	$1.05 \times 0.55 / 0.67$	$1.63 \times 0.65 / 1.90$	2.22x0.85/4.61	$1.84 \times 0.75 / 2.79$
300	10	$0.42 \times 0.40 / 0.24$	0.59x0.60/0.23	1.05x0.60/0.73	1.57x0.70/1.90	$1.19 \times 0.70 / 1.09$
	16	$0.55 \times 0.50 / 0.29$	0.89x0.60/0.52	$1.40 \times 0.70 / 1.52$	$1.96 \times 0.90 / 3.79$	$1.60 \times 0.80 / 2.26$
	25	$0.72 \times 0.60 / 0.34$	1.17x0.70/1.05	1.84×0.80/2.97	$2.45 \times 1.10 / 7.28$	$2.10 \times 0.90 / 4.39$
350	10	$0.49 \times 0.45 / 0.33$	0.70x0.65/0.35	$1.14 \times 0.75 / 1.06$	$1.72 \times 0.85 / 2.78$	$1.31 \times 0.85 / 1.61$
	16	$0.58 \times 0.65 / 0.24$	0.96x0.75/0.76\|	1.54×0.85/2.22	$2.20 \times 1.05 / 5.58$	$1.78 \times 0.95 / 3.33$
	25	$0.85 \times 0.65 / 0.52$	$1.38 \times 0.75 / 1.58$	$2.04 \times 0.95 / 4.35$	$2.70 \times 1.35 / 10.86$	2.27x1.15/6.49
400	10	0.55x0.50/0.43	0.74x0.80/0.48	1.22x0.90/1.48	1.79x1.10/3.86	1.51x0.90/2.27
	16	0.66x0.70/0.38	1.10x0.90/1.07	1.68x1.00/3.09	2.28x1.40/8.01	1.96x1.10/4.64
	25	0.90x0.80/0.72	$1.48 \times 0.90 / 2.18$	2.02x1.40/6.31	3.09x1.40/14.74	2.44x1.40/9.20

Anchor blocks

Soil with MEDIUM mechanical strength

- Internal friction: $\phi=30^{\circ}$
- Soil strength: $\sigma=0.6 \mathrm{daN} / \mathrm{cm}^{2}$
- Mass density: $\gamma=2 \mathrm{t} / \mathrm{m}^{3}$
- Height of cover: $\mathbf{H}=1 \mathrm{~m}$
- No groundwater

Soil with medium mechanical strength							
DN	$\begin{gathered} \text { Test } \\ \text { pressure } \end{gathered}$	$1 / 32$ bend wxh/V	1/16 bend wxh/v	1/8 bend wxh/V	$1 / 4$ bend wxh/V	Blank flange and tee wxh/V	
	bar	$\mathrm{m} \times \mathrm{m} / \mathrm{m}^{3}$	$\mathrm{m} \times \mathrm{m} / \mathrm{m}^{3}$	$\mathrm{m} \times \mathrm{m} / \mathrm{m}^{3}$	m^{3}	m^{3}	
60	10	$0.11 \times 0.16 / 0.01$	$0.14 \times 0.26 / 0.01$	$0.26 \times 0.26 / 0.03$	0.46x0.26/0.06	$0.33 \times 0.26 / 0.03$	
	16	$0.17 \times 0.16 / 0.02$	$0.21 \times 0.26 / 0.02$	$0.40 \times 0.26 / 0.05$	0.69x0.26/0.14	0.51x0.26/0.07	
	25	$0.17 \times 0.26 / 0.02$	0.33x0.26/0.03	0.60×0.26/0.10	1.01x0.26/0.29	$0.75 \times 0.26 / 0.16$	
80	10	$0.15 \times 0.18 / 0.02$	0.20x0.28/0.02	$0.38 \times 0.28 / 0.05$	0.65x0.28/0.13	0.48×0.28/0.07	
	16	$0.16 \times 0.28 / 0.02$	$0.31 \times 0.28 / 0.04$	$0.57 \times 0.28 / 0.10$	$0.97 \times 0.28 / 0.29$	0.73x0.28/0.16	
	25	$0.25 \times 0.28 / 0.03$	0.47×0.28/0.07	0.84x0.28/0.22	$1.13 \times 0.38 / 0.53$	$1.06 \times 0.28 / 0.34$	
100	10	$0.19 \times 0.20 / 0.04$	0.26x0.30/0.04	0.49x0.30/0.08	0.84x0.30/0.23	0.62x0.30/0.13	
	16	0.21x0.30/0.03	0.41x0.30/0.06	0.74x0.30/0.18	1.01x0.40/0.45	$0.93 \times 0.30 / 0.29$	
	25	0.33x0.30/0.05	0.61x0.30/0.12	1.08x0.30/0.38	$1.44 \times 0.40 / 0.92$	$1.10 \times 0.40 / 0.53$	
125	10	0.18×0.33/0.03	0.35x0.33/0.06	0.64x0.33/0.15	0.90x0.43/0.38	0.81×0.33/0.24	
	16	29x0.33/0.05	0.54x0.33/0.10	$0.96 \times 0.33 / 0.33$	1.32x0.43/0.81	0.99x0.43/0.46	
	25	$0.43 \times 0.33 / 0.07$	0.80x0.33/0.23	1.15x0.43/0.62	1.86x0.43/1.61	3/0.95	
150	10	$0.23 \times 0.35 / 0.04$	0.44×0	$0.80 \times 0.35 / 0.25$	1.12x0.45/0.62	0.84×0.45/0.35	
	16	$0.36 \times 0.35 / 0.07$	0.67×0.35/0.17	\|0.99x0.45/0.49		$1.62 \times 0.45 / 1.30$	$1.23 \times 0.45 / 0.75$
	25	0.54x0.35/0.11	$0.82 \times 0.45 / 0.33$	$1.42 \times 0.45 / 1$	$2.00 \times 0.55 / 2.41$	$1.54 \times 0.55 / 1.43$	
200	10	$0.33 \times 0.40 / 0.08$	0.62x0.40/0.17	0.94x0.50/0.49	$1.38 \times 0.60 / 1.26$	$1.18 \times 0.50 / 0.76$	
	16	0.51x0.40/0.13	0.79x0.50/0.35	1.38x0.50/1.05	1.97x0.60/2.57	$1.52 \times 0.60 / 1.52$	
	25	0.64x0.50/0.23	1.15x0.50/0.73	1.74×0.60/2.00\|	2.32x0.80/4.74	$1.94 \times 0.70 / 2.91$	
250	10	$0.43 \times 0.45 / 0.14$	0.69x0.55/0.29	$1.09 \times 0.65 / 0.85$	1.63×0.75/2.19	$1.35 \times 0.65 / 1.31$	
	16	$0.57 \times 0.55 / 0.20$	$1.03 \times 0.55 / 0.64$	$1.59 \times 0.65 / 1.80$	$2.16 \times 0.85 / 4.35$	$1.79 \times 0.75 / 2.64$	
	25	$0.84 \times 0.55 / 0.43$	1.33x0.65/1.26	$2.04 \times 0.75 / 3.44$	2.66x1.05/8.18	$2.32 \times 0.85 / 5.02$	
300	10	$0.53 \times 0.50 / 0.22$	0.85x0.60/0.48	$1.34 \times 0.70 / 1.39$	$1.87 \times 0.90 / 3.46$	1.53x0.80/2.06	
	16	$0.70 \times 0.60 / 0.33$	1.14x0.70/1.00	$1.79 \times 0.80 / 2.81$	$2.38 \times 1.10 / 6.86$	2.05x0.90/4.15	
	25	1.03x0.60/0.70	1.50x0.80/1.99	2.21x1.00/5.37	3.01x1.30/12.92	$2.38 \times 1.30 / 8.13$	
350	10	$0.55 \times 0.65 / 0.22$	0.92x0.75/0.69	$1.47 \times 0.85 / 2.03$	$2.10 \times 1.05 / 5.09$	$1.71 \times 0.95 / 3.04$	
	16	$0.83 \times 0.65 / 0.50$	$1.25 \times 0.85 / 1.47$	$1.89 \times 1.05 / 4.13$	$2.62 \times 1.35 / 10.22$	$2.13 \times 1.25 / 6.22$	
	25	$1.11 \times 0.75 / 1.01$	$1.67 \times 0.95 / 2.93$	$2.34 \times 1.35 / 8.13$	3.52x1.35/18.40	2.81x1.35/11.69	
400	10	$0.64 \times 0.70 / 0.31$	1.06x0.80/0.98	1.60x1.00/2.82	$2.18 \times 1.40 / 7.31$	$1.87 \times 1.10 / 4.24$	
	16	$0.88 \times 0.80 / 0.68$	$1.44 \times 0.90 / 2.07$	1.97x1.40/5.96	3.00x1.40/13.87	$2.37 \times 1.40 / 8.68$	
	25	1.19x0.90/1.41	1.84x1.10/4.09	2.68x1.40/11.08\|	4.01x1.40/24.73	$3.21 \times 1.40 / 15.82$	

Anchor blocks

3 HYDRAULIC THRUST

```
Thrust F = test P x f (1 bar)
Example: 45' bend
    DN = 150
    Thrust F = 1740 DaN
    Test P=10 bar
```

Thrust for pressure of 1 bar

DN	Tee or blank flange (daN)	$\mathbf{1 / 4}$ bend (daN)	$1 / 8$ bend (daN)	1/16 bend (daN)	$\mathbf{1 / 3 2}$ bend (daN)
$\mathbf{6 0}$	47	66	36	18	9
$\mathbf{8 0}$	75	107	58	29	15
$\mathbf{1 0 0}$	109	155	84	43	21
$\mathbf{1 2 5}$	163	230	15	63	32
$\mathbf{1 5 0}$	227	321	174	89	44
$\mathbf{2 0 0}$	387	547	296	151	76
$\mathbf{2 5 0}$	590	834	451	230	116
$\mathbf{3 0 0}$	835	1180	639	326	164
$\mathbf{3 5 0}$	1122	1587	859	438	220
$\mathbf{4 0 0}$	1445	2044	1106	564	283

4) SOIL CHARACTERISTICS

The values below are those generally accepted for soil characterization. They are no substitute for actual site or laboratory measurements.

Soil type	Dry $/$ wet		Submerged	
	ϕ	γ	ϕ	γ
	degrees	$\mathrm{t} / \mathrm{m}^{3}$	degrees	$\mathrm{t} / \mathrm{m}^{3}$
Fragmented rock	40	2	35	1.1
Gravel, sands	35	1.9	30	1.1
Gravel, sands Silts $/$ clays	30	2	25	1.1
Silts / clays	25	1.9	15	1.1
Humus Organic clays $/$ silts	15	1.5	no mean characteristics	

[^0]
Anchoring

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).
All the values contained in this document are provided by SAINT-GOBAIN PAM for guidance only. They are no substitute for carrying out prior studies or enlisting the services of a consultant.

(1) CONSTRUCTION RECOMMENDATIONS

The self-anchoring of push-in joints represents an alternative technique to concrete anchor blocks for withstanding the hydraulic thrust of buried pipelines.
The anchoring lengths suggested below have been calculated for the most frequently encountered types of soil and laying conditions (minimum height of cover $=1 \mathrm{~m}$).

If the laying conditions are not covered by the following tables, contact

 SAINT-GOBAIN PAM.Anchoring is recommended in case of space constraints (urban areas) or noncohesive soils.

The length to be anchored does not depend on the anchoring joint used.
The length to be anchored depends on the pipe's type of external coating:
-Usual coatings: BioZinalium, Zinalium or Zinc
-Special coatings: Standard TT, PUX, ZMU or PE sleeve
Length \mathbf{L} to be anchored according to the diagrams below:

(2) ANCHORING PRINCIPLE

Anchoring

F: hydraulic thrust on the joint
f: soil/pipe friction
L: length to be
 anchored

The technique involves anchoring joints over a sufficient length L on both sides of a bend so as to harness the friction forces (f) between the anchored sections (L) and the soil to withstand the hydraulic thrust (F).

(3) SOIL CHARACTERISTICS

The values below are those generally accepted for soil characterization. They are no substitute for actual site or laboratory measurements.

Soil type	Dry $/$ wet		Submerged	
	ϕ	γ	ϕ	γ
	degrees	$\mathrm{t} / \mathrm{m}^{3}$	degrees	$\mathrm{t} / \mathrm{m}^{3}$
Fragmented rock	40	2	35	1.1
Gravel, sands	35	1.9	30	1.1
Gravel, sands Silts / clays	30	2	25	1.1
Silts / clays	25	1.9	15	1.1
Humus Organic clays $/$ silts	15	1.5	no mean characteristics	

ϕ : soil internal friction angle
γ : soil density
(standard geotechnical data)

Anchoring

(4) ANCHORING LENGTHS

Assumptions for the calculation:

- Internal friction: $\phi=30^{\circ}$
- Soil strength: $\sigma=0.6 \mathrm{daN} / \mathrm{cm}^{2}$
- Mass density: $\gamma=2 \mathrm{t} / \mathrm{m}^{3}$
- No groundwater

Usual coatings:
-BioZinalium, Zinalium or Zinc

Anchoring lengths (in m) calculated with the above assumptions																
Joint type		1/4 bend			1/8 bend			1/16 bend			1/32 bend			Blank flange, valve or tee		
Height of cover (m)		1	1.5	2	1	1.5	2	1	1.5	2	1	1.5	2	1	1.5	2
DN	Test pressure	Lengths to be anchored (m)														
60	10	4.6	3.1	2.4	2.9	1.9	1.5	1.6	1.1	0.8	0.8	0.6	0.4	5.8	4.0	3.0
	16	7.3	5.0	3.8	4.6	3.1	2.3	2.6	1.7	1.3	1.4	0.9	0.7	9.4	6.4	4.8
	25	11.5	7.8	5.9	7.1	4.8	3.7	4.0	2.7	2.1	2.1	1.4	1.1	14.6	9.9	7.5
80	10	5.8	4.0	3.0	3.6	2.5	1.9	2.0	1.4	1.0	1.1	0.7	0.6	7.4	5.0	3.8
	16	9.3	6.3	4.8	5.8	3.9	3.0	3.2	2.2	1.7	1.7	1.2	0.9	11.8	8.1	6.1
	25	14.5	9.9	7.5	9.0	6.1	4.7	5.1	3.4	2.6	2.7	1.8	1.4	18.5	12.6	9.5
100	10	7.0	4.7	3.6	4.3	2.9	2.2	2.4	1.7	1.3	1.3	0.9	0.7	8.9	6.0	4.6
	16	11.1	7.6	5.8	6.9	4.7	3.6	3.9	2.6	2.0	2.1	1.4	1.1	14.2	9.7	7.3
	25	17.4	11.9	9.0	10.8	7.4	5.6	6.1	4.1	3.1	3.2	2.2	1.7	22.1	15.1	11.5
125	10	8.4	5.8	4.4	5.2	3.6	2.7	2.9	2.0	1.5	1.6	1.1	0.8	10.7	7.3	5.6
	16	13.5	9.2	7.0	8.4	5.7	4.3	4.7	3.2	2.4	2.5	1.7	1.3	17.2	11.7	8.9
	25		14.4	10.9	13.1	8.9	6.8	7.3	5.0	3.8	3.9	2.7	2.0	26.8	18.3	13.9
150	10	9.9	6.8	5.1	6.1	4.2	3.2	3.4	2.4	1.8	1.8	1.2	0.9	12.6	8.6	. 5
	16	15.8	10.8	8.2	9.8	6.7	5.1	5.5	3.8	2.9	2.9	2.0	1.5	20.1	13.8	0.5
	25	24.7	16.9	12.9	15.3	10.5	8.0	8.6	5.9	4.5	4.6	3.1	2.4	31.4	21.5	16.4
200	10	12.7	8.7		7.9	5.4	4.1	4.4	3.0	2.3	2.3	1.6	1.2	16.2	11.1	8.5
	16	20.3	14.0	10.7	12.6	8.7	6.6	7.1	4.9	3.7	3.8	2.6	2.0	25.9	17	13.6
	25	31.8	21.9	16.7	19.7	13.6	10.4	11.1	7.6	5.8	5.9	4.0	3.1	40.4	27.	21.2
250	10	15.4	10.7		9.6	6.6	5.1	5.4	3.7	2.8	2.8	2.0	1.5	19.6	13.6	
	16	24.6	17.0	13.0	15.3	10.6	8.1	8.6	5.9	4.5	4.5	3.1	2.4	31.3	21.7	16.6
	25	38.5	26.6	20.4	23.9	16.5	12.7	13.4	9.3	7.1	7.1	4.9	3.8	49.0	33.9	5.9
300	10	18.0	12.5	9.6	11.2	7.8	6.0	6.3	4.4	3.3	3.3	2.3	1.8	22.9		2.2
	16	28.8	. 0	15.4	17.9	12.4	9.5	10.0	7.0	5.3	5.3	3.7	2.8	36.	25.5	9.6
	25	45.0	31.3	24.0	27.9	19.4	14.9	15.6	10.9	8.4	8.3	5.8	4.4	57.2	39.8	0.6
350	10	20.5	14.4		12.7	8.9	6.9	7.1	5.0	3.8	3.8	2.7	2.0	26.1	18.3	4.1
	16	32.8	23.0		20.4	14.3	11.0	11.4	8.0	6.1	6.1	4.2	3.3	41.	29.2	2.5
	25	51.3	35.9	27.6	31.9	22.3	17.1	17.9	12.5	9.6	9.5	6.6	5.1	65.3	45.	35.1
400	10	23.0	16.1	12.4	14.3	10.0	7.7	8.0	5.6	4.3	4.2	3.0	2.3	29	20	. 8
	16	36.8	25.8	19.9	22.8	16.0	12.4	12.8	9.0	6.9	6.8	4.8	3.7	46.8	32.9	25.3
	25	57.5	40.3	31.1	35.7	25.1	19.3	20.	14.0	10.8	10.	7.5	5.7	73	51.4	39.6

Anchoring

A safety factor may be applied to the length to be anchored, depending on the:
-Laying conditions
-Quality and compaction of the backfill

- Uncertainties surrounding the physical characteristics of the backfill

Where applicable, allowance should be made for any partial presence of groundwater by correcting the weight of the full pipe and applying the corresponding Archimedes' value.

If using a polyethylene sleeve:
Apply a multiplier of 1.9 to the length to be anchored.

If using pipes with a polyethylene (TT) or polyurethane (PUX) coating:
Apply a multiplier of 1.5 to the length to be anchored.
Other cases: contact us.

Hydraulic testing

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) PREPARATION FOR THE TEST

Recommendations

The recommendation is to not exceed a length of 2,000 meters.

The length of the section to be tested depends on the layout configuration and the project's technical specifications.
Depending on the type of worksite, it is better to pressurize the pipeline while leaving the joints exposed to check for leaks.

Calculate the hydraulic forces

Developed at the ends of the main and install a suitably sized restraint system.
Thrust F = test P x f (1 bar)

Example: $\quad \mathrm{DN}=150 \quad$ Test $\mathrm{P}=10$ bar Thrust F 227 daN

DN	f(1bar)	DN	f(1bar)	DN	f(1bar)	DN	f(1bar)
	daN		daN		daN		daN
60	47	250	590	600	3167	1200	12370
80	75	300	835	700	4278	1400	16787
100	109	350	1122	800	5568	1500	19236
125	163	400	1445	900	7014	1600	21851
150	227	450	1809	1000	8626	1800	27612
200	387	500	2223	1100	10405	2000	34045

Hydraulic testing

Calculate the volume of water

Calculation for the volume of water in m^{3}
$\pi \times(\mathrm{DN} / 2000)^{2} \times$ pipeline length
Example: 1,850-metre section of DN 800 pipe

$$
3.1415 \times(800 / 2000)^{2} \times 1850=929.78 \mathrm{~m}^{3}
$$

Block the ends of the test section with blank flanges equipped with valves for water filling and air venting.

Hydraulic testing

Pressurizing the pipe compresses the temporary end restraints. If necessary, use screw jacks to compensate for any compression.

Absorb the forces using timbers laid across the trench or by sheet piling (also provide lateral restraints).
Avoid using the end of a previously laid and hydraulically tested pipe section as a buttress.

(2) PIPE FILLING AND TEST PREPARATION

Gradually fill the main from the low points.
Increase to maximum pressure and leave for 24 hours according to EN 805 before performing the test for the main to reach equilibrium (rehydration of the pipes' cement internal lining).

Checking filling

Any air in the main must be completely removed.
Check that the air valves are functioning.
Open the wash-out valves to check the arrival of water.

(3) PRESSURE TEST

With the pipes completely filled, slowly increase the pressure until the planned test pressure is reached.

Keep a constant eye on the restraints

Apply the defined test criteria.
The test pressure should not fall by more than 0.2 bar when maintained for one hour in accordance with EN 805.

Empty the main, remove the test equipment and, connect up the section.

Flush out the main thoroughly to remove any foreign bodies trapped during laying.

Disinfect before commissioning.

External coating repairs

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) EQUIPMENT AND TOOLS REQUIR

-Gloves, protective mask and goggles
-Brush, abrasive paper and cutter

- Spatula, mastic knife
-Paintbrushes, roller
-Gas burner
- Adhesive roller

(2) PIPES WITH A BIOZINALIUM AND ZINALIUM EXTERNAL COATING: Natural, Integral, Blutop, Topaz, Tag32

Brush to remove any dirt or loose particles.

Dry the surfaces to be coated (in case of low temperatures or high humidity, use a gas burner).

If the iron is exposed, apply high-zinc anticorrosion primer NATZINC (ref. 251222) with a paintbrush with vertical and horizontal strokes.

Allow to dry for a few minutes.

Apply AQUACOAT paint with a paintbrush (NATURAL/BLUTOP Blue ref. 240991 - INTEGRAL/TAG32/TOPAZ Red ref. 240990)
 with vertical and horizontal strokes.

3 FITTINGS WITH AN EPOXY EXTERNAL COATING: Natural, Blutop, Integral, Topaz (all versions).

Brush and clean the area to be touched up and then dry.
Apply the epoxy paint with a paintbrush or spatula with vertical and horizontal strokes.
-Natural / Blutop: EUROKOTE 4820 Blue (1 kg dose: ref. 158255)
-Integral / Tag32 / Topaz: EUROKOTE 4820
Red Brown (1 kg dose: 184653 or kit of five 50 ml syringes: ref. 220817)
-Standard TT PUX and Integral TT PUX:
Eurokote 4820 Ivory (ref. 220818)

External coating repairs

4. PIPES WITH A ZINC AND SYNTHETIC PAINT EXTERNAL COATING

Brush to remove any dirt or loose particles.

Dry the surfaces to be coated (in case of low temperatures or high humidity, use a gas burner).

If the iron is exposed, apply high-zinc anticorrosion primer NATZINC (ref. 251222) with a paintbrush with vertical and horizontal strokes.

Allow to dry for a few minutes.

Apply ENDOLAC 245-30 FGC paint (ref. 158134) with a paintbrush with vertical and horizontal strokes.

5 PIPES WITH A POLYETHYLENE EXTERNAL COATING

5.1 Significant damage

Roughen the area to be repaired with abrasive paper.
Clean and dry the area.
Preheat to approximately $60^{\circ} \mathrm{C}$.
Fit an open heat-shrink sleeve (reference on request).

Wrap the sleeve all around the pipe's
 circumference using a gas burner and then fit the closing strip.

5.2 Moderate damage

Repair kit ref. 111216 comprising abrasive paper, mastic and a repair strip.

Clean and dry the exposed area.
Cut off and remove the damaged PE.

External coating repairs

Preheat to approximately $60^{\circ} \mathrm{C}$.
Apply the mastic and smooth with a knife.
Place the repair strip with a 50 mm overlap on the edges of the cut area.

Heat the strip with a gas burner until the heatsensitive paint changes color.
Press the strip down wearing appropriate gloves.

5.3 Minor damage

In case of minor damage to the TT coating, use the PE repair stick (ref. 175507). Using a brazing torch, heat the stick until it drips onto the damaged area and then smooth over.

6 PIPES WITH A POLYURETHANE EXTERNAL COATING

Brush to remove any dirt or loose particles and then sand to clean and roughen the surface.
Remove any dust from the surface to be coated.

Heat with a gas burner to remove any traces of humidity.

Apply the product to the surface with a syringe (Eurokote 4820 Ivory - ref. 220818).

Cover with a sheet of PVC to smooth out and protect the product.
Close with adhesive.

In case of major damage to the PUX coating, follow procedure 5.1 in the previous chapter.

External coating repairs

(7) PIPES WITH A CEMENT EXTERNAL COATING

Prepare the affected surface by removing the damaged and loose mortar.

Brush to remove any dirt or loose particles and then clean the surface.

Prepare the ZMU repair kit (DN 80 to 600: ref. 218842).

- Mix the dry components
-Add the liquid while stirring vigorously
-Leave for five minutes and then mix again

Dampen the surface.

Fill with mortar using a spatula and then
 smooth the surface.
(DN ≥ 700 : ref. 158009)

Prepare the SIKADUR 31DW mixture with three parts R (resin) and one part H (hardener). Mix to an even consistency.
Preferably position the area to be repaired facing downwards.
Remove any damaged and loose mortar.
Clean until spotless.
Apply the mixture and compact to ensure the correct thickness.
Smooth the surface.

Minimum application temperature: $+5^{\circ} \mathrm{C}$.

Cover with plastic film or a damp cloth to maintain a high level of humidity and ensure that the mixture sets properly.
Optimal drying time: 2 hr 30 min .

Internal lining repairs

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

1.

For all mixtures of resins and hardeners, you must comply with the specified proportions.

(1) EQUIPMENT AND TOOLS REQUIRED

-Gloves, protective mask and goggles
-Brush, abrasive paper and cutter
-Spatula, mastic knife
-Paintbrushes, roller
-Gas burner
2 PIPES WITH A CEMENT INTERNAL LINING (DRINKING WATER AND SEWAGE): Natural, Integral, Classic (all versions).
Prepare the SIKADUR 31DW mixture (ref.
158009) with three parts R (resin) and one part H (hardener). Mix to an even consistency.
Preferably position the area to be repaired facing downwards.

Remove any damaged and loose mortar.
Clean until spotless.
Apply the mixture and compact to ensure the correct thickness.
Smooth the surface.
For a socket without a cement lining, use:

- NATURAL: NatZinc ref. 251222 (5 kg dose) and then Aquacoat (0.75 kg dose) ref. 240991 - CLASSIC and STANDARD TT: NatZinc ref. 251222 (5 kg dose) and then Endolac (1 kg dose) ref. 158134
- INTEGRAL and INTEGRAL TT or PUX: NatZinc ref. 251222 (5 kg dose) and then Eurokote (1 kg dose) ref. 236283

3 PIPES WITH A DUCTAN AND EPOXY INTERNAL LINING (DRINK. WATER AND SEWAGE): Blutop, Topaz, Tag32.

Deburr the edges of the damaged area with a cutter.
Sand and clean the damaged area.
Apply the Eurokote 4820 mixture to the damaged area with a paintbrush.
-Blutop: ref. 158255 (1 kg dose) or 220815 (five 50 ml syringes)

-Topaz: ref. 184653 (1 kg dose) or 220817 (five 50 ml syringes)
-Tag32: ref. 184653 (1 kg dose) or 220817 (five 50 ml syringes)
Allow to dry.

Internal lining repairs

(4) PIPES WITH A POLYURETHANE INTERNAL LINING (DRIN. WATER AND SEWAGE): Natural PUR, Integral pH1.

Deburr the edges of the damaged area with a cutter.

Brush and clean to remove any dirt or loose particles.

Dry the surfaces to be coated (in case of low temperatures or high humidity, use a gas burner).

Apply EUROKOTE 4820 Ivory paint (1 kg dose, ref. 185005 or five 50 ml syringes ref. 220818) with a paintbrush with vertical and horizontal strokes.

Cover with a sheet of PVC to smooth out and protect the product.
Close with adhesive.

Allow to dry.
For a socket without a polyurethane lining, use:

- NATURAL PUR: ref. 158255 (1 kg dose) or 220815 (five 50 ml syringes)
- INTEGRAL pH1: ref. 184653 (1 kg dose) or 220817 (five 50 ml syringes)

5 FITTINGS WITH AN EPOXY COATING (DRINK. WATER AND SEWAGE): Natural, Integral, Classic (all versions).

Deburr the edges of the damaged area with a cutter.

Sand and clean the damaged area.

Apply the Eurokote 4820 mixture to the damaged area with a paintbrush.
-Natural/Blutop/Topaz: ref. 158255 (1 kg dose) or 220815 (five 50 ml syringes)

- Integral/Tag32/PUX: ref. 184653 (1 kg dose) or 220817 (five 50 ml syringes)

Allow to dry.

Comply with the recommended applications specified in the safety data sheets available in the Downloads section on www.pamline.com.

Repair products

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) DRINKING WATER AND SEWAGE PIPES \& FITTINGS

BLUTOP range - DN/OD 75 to 160

area	ref.	product	packaging	(2)
	251222	NATZINC	5 kg dose ($\mathrm{R} 90 \%+\mathrm{H} 10 \%$)	
(1) exterior	240991	AQUACOAT blue 5005	0.75 kg dose	man 5 cosios
(2) interior	158255	UROKOTE 4820 bleu	1 kg dose (R68\% ${ }^{\text {H }} \mathrm{H} 32 \%$)	(1)
(3) interior socket	240991	AQUACOAT blue 5005	0.75 kg dose	
(1) exterior and (2) interior	158255	EUROKOTE 4820 blue	1 kg dose (R68\% H + 32%)	(1)

NATURAL range - DN 80 to 1000

area	ref.	product	packaging
(1) exterior	251222	NATZINC	5 kg dose (R90\%+H10\%)
	240991	AQUACOAT blue 5005	0.75 kg dose
(2) interior 158009	SIKADUR31 DW	1 kg dose (R80\%+H20\%)	
(3) interior socket	240991	AQUACOAT blue 5005	0.75 kg dose
(1) exterior and	158255	EUROKOTE 4820 blue	1 kg dose (R68\%+H32\%)
(2) interior			

CLASSIC range - DN 700 to 1200

TT PE range - DN 80 to 700

Repair products

TT PUX range - DN 800 to 2000

area	ref.	product	packaging			
(1) exterior	185005	EUROKOTE 4820 ivory	1 kg dose (R68\%+H32\%)			
	$\begin{gathered} \text { or } \\ 220818 \end{gathered}$	EUROKOTE 4820 ivory	kit of five 50 ml syringes	\|		
(2) interior	158009	SIKADUR 31 DW	6 kg kit (R75\% + H25\%)			
(3) interior socket	184653	EUROKOTE 4820 brown red	1 kg dose ($\mathrm{R} 68 \%+\mathrm{H} 32 \%$)			
${ }^{4}$) spigot	251222	NATZINC	5 kg dose ($\mathrm{R} 90 \%+\mathrm{H} 10 \%$)			
	184653	EUROKOTE 4820 brown red	1 kg dose (R68\%+H32\%)			
(1) exterior and (2) interior	158255	EUROKOTE 4820 blue	1 kg dose (R68\%+H32\%)			
NATURAL PUR range - DN 150 to 700						

CLASSIC PUR range - DN 800 to 2000

ZMU range - DN 80 to 600

ZMU range - DN ≥ 700

Repair products

(2) SEWAGE PIPES AND FITTINGS

INTEGRAL range (BioZinalium, Zinalium,Aquacoat)
DN 80 to 2000

INTEGRAL pH1 range - DN 150 to 2000

INTEGRAL TT PE range - DN 80 to 700

INTEGRAL ZMU range - DN 80 to 700

Repair products

TOPAZ range - DN 75 to 160

area	ref.	product	packaging
(1) exterior	240990	AQUACOAT	dose de 0.75 kg
(2) cut	184653	EUROKOTE 4820 red brown	dose de 1kg (R68\%+H32\%)
	$\begin{gathered} \text { or } \\ 220817 \end{gathered}$	EUROKOTE 4820 red brown	kit of five 50 ml syringes
	250714	reparative kit cut TOPAZ	
(3) interior	158255	Eurokote 4820 blue	1 kg dose (R68\%+H32\%)

INTEGRAL and TOPAZ fittings (all versions)- DN 75 to 2000

area	ref.	product	packaging
(1) exterior	184653	EUROKOTE 4820 red brown	1 kg dose ($\mathrm{R} 68 \%+\mathrm{H} 32 \%$)
	$\begin{gathered} \text { or } \\ 220817 \end{gathered}$	EUROKOTE 448 Red Brown	kit of five 50 ml syringes
(2) interior	184653	EUROKOTE 4820 Red brown	1 kg dose ($\mathrm{R} 68 \%+\mathrm{H} 32 \%$)
	$\begin{gathered} \text { or } \\ 220817 \end{gathered}$	EUROKOTE 4820 Red brown	kit of five 50 ml syringes

PLUVIAL range - DN 350 to 2000

TAG 32 Biozinalium range - DN 150 to 300

TAG 32 fittings DN 150 to 300

area	ref.	product	packaging
(1) exterior and (2) interior	184653	EUROKOTE 4820 brown red	1 kg dose (R68\%+H32\%)
	$\begin{gathered} \text { or } \\ 220817 \end{gathered}$	EUROKOTE 4820 brown red	kit of five 50 ml syringes

Comply with the recommended applications specified in the safety data sheets available in the Downloads section on www.pamline.com.

Polyethylene sleeve General instructions

The process of fitting a PE sleeve involves applying a continuous barrel sleeve (outside the trench) and subsequently a joint sleeve (at the bottom of the trench).
-Pipes must be clean and dry (no soil entrapped between the pipe and sleeve).
-The pipe bed and backfill must not contain any stones or fragmented rock that could damage the sleeve during laying or in service (soil load).

SPECIAL INSTRUCTIONS

DETAIL 1

Barrel sleeve
Carefully apply the PE sleeve so that it is tight against the pipe. Fold the sleeve at the top.

DETAIL 2
Joint sleeve
Carefully fit the joint sleeve closely around the junction and overlap the barrel sleeves (upstream and downstream).
Secure with a fastener as close as possible to the gland (EXPRESS joint) or socket face (STANDARD joint).
Fix the ends with adhesive tape overlapping the barrel sleeve and joint sleeve.

Polyethylene sleeve Sleeving the barrel

NATURAL, INTEGRAL (ZINALIUM + BIOZINALIUM), ZMU, STANDARD TT and INTEGRAL TT pipes do not require sleeves.

(1) SLIDE

Before lowering into the trench, lift the pipe in the middle (refer to the "Handling" guide) and slide the pleated barrel sleeve over the spigot.

(2) UNFOLD

Since the pipe is supported by two battens, spread the barrel sleeve over the full length of the pipe and carefully wrap the sleeve tightly around the pipe (the PE sleeve must not billow).

3 FASTEN

Secure the fold down with adhesive tape.
Fix the ends of the sleeve to the pipe barrel with adhesive tape overlapping both the barrel and the sleeve (around the full circumference).
Add fasteners (plastic-coated steel wire) every 1.5 m .
Slip on the joint sleeve.

(4) ASSEMBLE

Lower the pipe into the trench.
Join the pipe. The fold must always be positioned at the top the pipe.

(5) WRAP

Bring the joint sleeve over the socket and spigot.

Make sure that you create a large enough gap under the pipe to easily fit the sleeve (and secure with adhesive tape and fasteners) - see diagrams.

Fit the joint sleeve as thightly as possible.

Successive assembly of barrel and joint sleeves must form a continuous protection.
Use the same sleeving to protect fittings.

Polyethylene sleeve Sleeving the barrel

The contractor is responsible for analyzing and eliminating any risks when installing the PE sleeve (especially the use of personal protective equipment).

1

2

3

(4)

(5) Ground

Polyethylene sleeve Sleeving the joint

(1) PULL

Pull the joint sleeve over the spigot and socket. Make sure that you create a large enough gap under the pipe to easily fit the sleeve (and secure with adhesive tape).

Ground

2 FIX

Fold the joint sleeve over and wrap as tightly as possible, overlapping the adjoining barrel sleeves (the fold must always be positioned at the top).
Secure with adhesive tape as close as possible to the gland (STANDARD Ve or EXPRESS joint) or socket face (STANDARD or UNIVERSAL joint).
Fix the ends on the adjoining barrel sleeves with adhesive tape wrapped around the whole circumference to make a watertight overlap.

Standard or UNIVERSAL joint

(3) ASSEMBLE

Successive assembly of barrel and joint sleeves must form a continuous protection.

Ground

Polyethylene sleeve Sleeving fittings

Use the same polyethylene sleeve to protect fittings.
Polyethylene sleeves must be fitted according to the same recommendations (in particular, the polyethylene sleeve must be wrapped around the pipe as tightly as possible).

Bend

> Bend Adhesive tape (over the barrel sleeve)

3-socket tee

Preparing the barrel and joint sleeves

DN		Barrel		Joint (according to type)			Sleeve thickness	
				$\begin{gathered} \text { STD } \\ \text { UNI PK } \end{gathered}$	$\begin{gathered} \hline \text { EXP } \\ \text { STD Ve } \end{gathered}$			
	L	W	Lf	W	W	Lj		
	m	m	m	m	m	m	$\mu \mathrm{m}$	
*60	6	0.31	5.8	0.31	0.40	0.60	200	4
*80	6	0.31	5.8	0.31	0.40	0.60	200	4
*100	6	0.31	5.8	0.31	0.56	0.60	200	4
*125	6	0.40	5.8	0.40	0.56	0.60	200	4
*150	6	0.40	5.8	0.41	0.56	0.60	200	4
*200	6	0.56	5.8	0.56	0.71	0.60	200	4
*250	6	0.71	5.8	0.71	0.90	0.60	200	4
*300	6	0.71	5.8	0.71	0.90	0.60	200	4
*350	6	0.90	5.8	0.90	1.12	0.70	200	4
*400	6	0.90	5.8	0.90	1.12	0.70	200	4
*450	6	1.12	5.8	1.12	1.12	0.70	200	4
*500	6	1.12	5.8	1.12	1.25	0.70	200	4
*600	6	1.25	5.8	1.25	1.60	0.70	200	4
700	7	1.60	6.7	1.60	1.60	0.80	200	5
800	7	1.80	6.7	1.80	2.24	0.80	200	5
900	7	2.24	6.7	2.24	2.24	0.80	200	5
1000	7	2.24	6.7	2.24	2.50	0.80	200	5
1100	7	2.50	6.7	2.50	2.50	0.80	200	5
1200	8.26	2.50	7.7	2.50	2.50	0.80	400	6
1400	8.19	2.80	7.7	2.80		0.80	400	6
1500	8.18	3.10	7.7	3.10		0.80	400	6
1600	8.18	3.10	7.7	3.10		0.80	400	6
1800	8.17	3.60	7.7	3.60		0.80	400	6
2000	8.13	4.50	7.7	4.50		0.80	400	6

(*) For STANDARD pipes (DN 60 to 600), barrel and joint sleeves are supplied pre-cut to size in one package.

Re-rounding DN 200 to 700

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

Using a circometer, ensure that the outer diameter complies with the following values:

DN	Outside diameter OD (mm)	
	Nominal value	Limit deviations
$\mathbf{2 0 0}$	222	$+1 /-3.0$
$\mathbf{2 5 0}$	274	$+1 /-3.1$
$\mathbf{3 0 0}$	326	$+1 /-3.3$
$\mathbf{3 5 0}$	378	$+1 /-3.4$
$\mathbf{4 0 0}$	429	$+1 /-3.5$
$\mathbf{4 5 0}$	480	$+1 /-3.6$
$\mathbf{5 0 0}$	532	$+1 /-3.8$
$\mathbf{6 0 0}$	635	$+1 /-4.0$
$\mathbf{7 0 0}$	738	$+1 /-4.3$

Excerpt from EN 545 - Table 15
However, pipes may become oval-shaped due to transportation and handling, meaning that fittings cannot be assembled correctly.

(1) CHECK THE OVALITY

Ovality (\%) $=\frac{\mathrm{DM}-\mathrm{dm}}{\mathrm{DM}+\mathrm{dm}} \times 100$
DM: maximum diameter measured dm : minimum diameter measured

TACKLE (ref. 244524)

-Two steel bars (top and bottom) fitted with movable pads
-Two threaded rods (right-hand thread)
-Two Nylstop nuts + washers

(2) FIT

Fit the tackle according to the diagram. The tackle can be set up 50 cm from the end of the pipe so that sleeves can be fitted.

3 TIGHTEN

Tighten the nuts by hand so that the tackle is stable.
With a size 30 spanner, tighten the nuts on the rods alternately and gradually.

Re-rounding DN 200 to 700

(4) CHECK

Check that the spigot is perfectly round.
Ensure that the procedure has not damaged the cement lining.

5 ASSEMBLE

With the device still in position, assemble the joint.
The nuts must be kept tight while mounting the joint to compensate for any elastic deformation in the pipe.

In case of a small diameter pipe, you can rotate the bars using the adjustable pads.

Re-rounding
 DN ≥ 800

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

TACKLE ref. 225018 (DN 800 to 1000)-ref. 158333 (DN 1200 to 2000)
-Hydraulic jack
-Adjustable support

Using a circometer, ensure that the outer diameter complies with the following values:

DN	Outside diameter OD (mm)	
	Nominal value	Limit deviations
$\mathbf{8 0 0}$	842	$+1 /-4.5$
$\mathbf{9 0 0}$	945	$+1 /-4.8$
$\mathbf{1 0 0 0}$	1048	$+1 /-5.0$
$\mathbf{1 1 0 0}$	1152	$+1 /-6.0$
$\mathbf{1 2 0 0}$	1255	$+1 /-5.8$
$\mathbf{1 4 0 0}$	1462	$+1 /-6.6$
$\mathbf{1 5 0 0}$	1565	$+1 /-7.0$
$\mathbf{1 6 0 0}$	1668	$+1 /-7.4$
$\mathbf{1 8 0 0}$	1875	$+1 /-8.2$
$\mathbf{2 0 0 0}$	2082	$+1 /-9.0$

Excerpt from EN 545 - Table 15
However, pipes may become oval-shaped due to transportation and handling, meaning that fittings cannot be assembled correctly.

(1) CHECK THE OVALITY

Ovality (\%) $=\frac{D M-d m}{D M+d m} \times 100$

DM: maximum diameter measured dm : minimum diameter measured

(2) POSITION

Position the parts according to the diagram while respecting the ovalization position.

Re-rounding
 DN ≥ 800

(3) ADJUST

Adjust the support according to the diameter.

(4) OPERATE

Operate the jack and check that the spigot is perfectly round.

(5) CHECK

Ensure that the procedure has not damaged the cement lining.
(6) ASSEMBLE

With the device still in position, assemble the joint.

Dismantling joints

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

|STANDARD Vi, UNIVERSAL Vi AND BLUTOP Vi

(1) REQUIRED EQUIPMENT

DN	Ref. anvil 1	Ref. Steel shim 2	Number of shims required	
Standard Vi and UNIVERSAL Vi				1
60 80	110680	110682	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\sim A$
100			5	
125	110681		6	
150	110681		7	
200			9	-Gloves, goggles, safety shoes -Brush, cloth -Lump hammer -Lubricant paste -Textile straps
250			11	
300			13	
350			15	
400	110683		16	
450			18	
500			19	
600			23	
700			27	
Blutop Vi				
75		110682	3	
90	110680		4	
110			4	
125			5	
140	110681		5	
160			6	

2. PREPARATION

Rinse with water and brush the joint. Clean the annular space as much as possible.

Push the spigot fully into the socket to release the inserts.

Prepare the lubricant paste, the anvil
and extractor shims.

Dismantling joints

3 POSITION THE EXTRACTOR SHIMS

Slide the first shim into the slot in the anvil.

Coat the exposed part of the shim with lubricant paste (both sides).

Place the shim + anvil in the annular space.
The large side of the shim must be in contact with the joint.

Gradually drive the shim between the joint and the pipe.

Keep the shim flat against the pipe barrel if necessary.

Repeat all the way round the joint for the other shims.

Overlap the shims by approximately 4 to 5 mm .
The final shim can be slipped beneath the first shim.

Dismantling joints

(4) DISMANTLING THE JUNCTION

Draw the spigot out of the socket using textile straps and a digger bucket.

After dismantling the joint, ensure that the surface of the spigot is smooth before reusing. If the spigot is damaged, it must be cut off.

Under no circumstances must the dismantled Standard Vi / Universal Vi / Blutop Vi joint be reused.

|UNIVERSAL Ve

(1) REQUIRED EQUIPMENT

DN	100	125	150	200	250	300	350	400	450	500	600	700	800	900	1000	1200	1400	1500	1600
Shim																			
Number	3			4			4			5			14	16	18	20	20	24	24

- Gloves, goggles, safety shoes
-Brush, cloth
- Lump hammer
-Lubricant paste
-Textile straps

Dismantling joints

(2) PREPARATION

Rinse with water and brush the joint.
Clean the annular space as much as possible.

Push the spigot fully into the socket to release the locking ring.

Prepare the lubricant paste and the
dismantling tools.

(3) POSITION THE SHIMS

DN 100 to DN 300

Gradually hammer the wedge between the metal locking ring and the pipe until reaching the weld bead.

Repeat all the way round the joint for the other shims.

DN 350 to DN 700

Insert shims between the metal locking ring and the pipe, starting at opposite ends of the open ring.

Insert the remaining three shims around the rest of the joint.

Dismantling joints

DN 800 to DN 1600

Introduce the extractor shims between the pipe and the metal locking ring (one shim at the end of each segment).

Proceed in the same way for all the segments around the circumference.

(4) DISMANTLING THE JUNCTION

Draw the spigot out of the socket using textile straps and a digger bucket.

Under no circumstances must the dismantled Standard joint be reused.

Refer to the PamlineTV sheet at the end of the folder.

Repairing pipes

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) PIERCED PIPES

Repair collar

Longitudinal fracture $\leq 35 \%$ of the collar
Circumferential fracture $\leq 10 \mathrm{~mm}$
-Clean the part of the pipe that needs to be repaired.

- Fit the collar around the damaged section.
-Ensure that the gasket is not folded and mated firmly against the pipe.
 Lubricate the gasket with soapy water or lubricant paste.
-Position the opposite end of the collar on top of the gasket.
- Insert the bolts and tighten by hand.
- Turn the collar in the direction indicated by the arrow on the label.
- Ensure that the damaged section is beneath the vulcanized part of the joint.
- Gradually tighten the nuts until the jaws close together.

The vulcanized part of the joint must not be deformed, otherwise leaks could occur.

Different types of repair collars

Repairing pipes

(2) BROKEN PIPE (NON-ANCHORED SECTION)
 ULTRALINK, LINK GS, ULTRAQUICK, QUICK GS, EXPRESS COUPLINGS

-Carefully remove the soil around the existing pipeline.

- Use a circometer to check the pipe's diameter.
- Cut out the damaged area of the existing pipe (refer to PIPE CUTTING).
-Remove the damaged section.
-Check the length before creating the replacement section UU while allowing for an admissible gap: Length of replacement section UU = C-2 x J
-Present replacement section UU with the junction elements in alignment with the two pipes that need to be connected.
-Position the fittings while creating an equal gap on each side of the replacement section UU.
-Bring each of the components together and insert the bolts. Check that all parts are perfectly positioned.

!
In case of drinking water systems, all parts must be disinfected before assembly.

3 LEAKING JUNCTION (NON-ANCHORED SECTION)

-Carefully remove the soil around the existing pipeline.

- Use a circometer to check the pipe's diameter.
-Draw the cutting marks (between 150 and 250 mm):

-Cut and remove the marked section (refer to the PIPE CUTTING guide)

Repairing pipes

-Free the spigot cut-out and remove the joint:

The joint must be replaced.
-Insert a new STANDARD JOINT (refer to the STANDARD JOINT guide) in the socket.
-Draw the marks for the position of the EXPRESS coupling (refer to the EXPRESS JOINT guide). For the section remaining in place: insert the gland, gasket and coupling:

-Re-assemble the spigot spigot section after checking for conformity.
-Place the EXPRESS collar in the middle of the cut-out section and then assemble the glands with the bolts.

4 BROKEN PIPE (ANCHORED SECTION)

```
-Parts required for the repair:
    -1 flanged short pipe
    -2 STANDARD socket flanges
    -2 flanged joints
    -2 STANDARD Ve anchoring kits (gland and locking ring)
- Mark the cutting lines according to the following formula:
```


D (cut length) $=\mathrm{L}+(2 \mathrm{xe})+(2 \times \mathrm{P})$
$e=20 \mathrm{~mm} / \mathrm{L}=250$ or $500 \mathrm{~mm} / \mathrm{P}=$ according to the DN

Repairing pipes

-Cut according to D and then remove the damaged section.

-Dismantle the two cut sections.

A special tool may be required depending on the type of anchored joints (refer to the DISMANTLING ANCHORED JUNCTIONS guide).
-Recreate a locking weld bead on each of the two cut sections.

(refer to the WELD BEAD guide)
-Recreate the chamfers (refer to the PIPE CUTTING guide).
On each of the two ends of the pipe, re-assemble the cut sections fitted with Standard Ve glands.

Present and assemble the two flange sockets.

Fully insert the two flange sockets.
-Position the flanged short pipe and the two flat joints between the flange sockets

Repairing pipes

- Install the bolts in the holes and gently tighten (by hand).
-Position the four STANDARD glands and bolts.
Tighten slightly by hand.

-Finally, tighten the flange bolts and then the gland bolts.
Refer to the FLANGE JOINTS guide
Refer to the STANDARD Ve JOINTS guide

Branches for sewage pipes rectangular hole Saddle branches

1 DRAW

Using the template provided, draw the following on the pipe barrel:
-The external rectangular outline of the plate.
-The internal outline of the pipe neck from the saddle branch.

- A rectangle corresponding to the dimensions specified in the following table and positioned around the circle drawn during the previous step.

	Opening dimensions	
DN	Length (mm)	Width* (mm)
$\mathbf{2 0 0}$	190	190
$\mathbf{2 5 0}$	190	250
$\mathbf{3 0 0}$	240	250
$\mathbf{4 0 0}$	300	300
$\mathbf{5 0 0}$	300	300
$\mathbf{6 0 0}$	300	300

* Cut on the line. Measure on the circumference (circle arc).

(2) CUT AND CLEAN

Using a disc cutter, cut the rectangular opening in the pipe barrel on the inside of the line. Comply with the centerline of the pipe shown on the cutting template.
Use a multi-material cutting disc.
Avoid cutting over the line in the corners.
Using a cloth, clean the part of the pipe barrel to
 which the plate will be mounted, as well as the inside of the pipe and the face to be re-coated.

3 REPAIR

Repair the coating on the exposed part of the pipe after cutting by applying fast-drying epoxy paint with a paintbrush.
If necessary, repair the lining.
Product used: ISOLARM protective paste (ref. 179099)

(4) ASSEMBLE

Fit the gasket in the housing on the internal face of the plate.
Lubricate the gasket once seated in its housing. Start assembly in the middle of each straight section and progressively fit by hand. Use a
 mallet if necessary.
Fit the plate to the pipe barrel.
Gradually tighten the bolts, alternating on both sides until the plate is perfectly in contact with the pipe barrel.
Fit and tighten the stirrups (until the part is in contact with the pipe).

Branches for sewage pipes round hole 90° saddle branches

(1) BORE

Use a boring machine with a centering base.
Bore with a hole saw specifically for iron ($\varnothing 172 \mathrm{~mm}$ for 150 branches and $\varnothing 232 \mathrm{~mm}$ for 200 branches).
Lubricate with water.

(2) PUNCH AND DRILL

Mark the position of the two holes with a center punch.
Drill a hole with a 13 mm diameter.
Preferably use a drill bit with a tungsten carbide tip for hardened steel and abrasive materials.

3 Deburr

Carefully deburr and break the angles.

(4) COAT

Coat the exposed parts with ISOLARM paste (INTEGRAL, TAG32) or EUROKOTE (INTEGRAL PUX, INTEGRAL pH1).

(5) MOUNT THE BOLTS

Mount the two bolts with their compressed plastic rings in the holes.

Branches for sewage pipes round hole Saddle branches

6 POSITION THE GASKET

Position the gasket according to the type of joint (see diagrams A and $B)$.
Check that the gasket is properly seated.
Lubricate the gasket.

7 ASSEMBLE

Mount the fully assembled iron part with a single bolt.
Place a washer and nut on the bolt, but without tightening.
Finish mounting the iron part. If necessary, use a wooden lever to avoid damaging the coating. Gradually apply increasing pressure and avoid jerky movements.

8 TIGHTEN

Add the second bolt.

Tighten both nuts.

Hold the bolt by means of the flat sections at the end of the bolt (size 7 spanner).

Torque: $\mathbf{3 0}$ N.m

Hole saws that are suitable for iron are marketed by PAM.

DN	Ø bore (mm)	reference
$\mathbf{1 5 0}$	172	111173
$\mathbf{2 0 0}$	232	111174

Branches for sewage pipes round hole

Swivel saddle branches

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

1) BORE

Use a boring machine with a centering base and a hole saw specifically for iron ($\varnothing 172 \mathrm{~mm}$ for 150 branches and $\varnothing 232 \mathrm{~mm}$ for 200 branches).
Lubricate with water.

2 PUNCH AND DRILL

Position the template while respecting the pipe's centerline.
Mark the position of the two holes with a center punch.
Drill a hole with a 13 mm diameter.
Preferably use a drill bit with a tungsten carbide tip for hardened steel and abrasive materials (high performance).

3 Deburr

Carefully deburr and break the angles.

(4) COAT

Coat the exposed parts with:

- ISOLARM paste ref. 179099 for INTEGRAL or TAG 32 pipes
- IVORY paint ref. 220818 for INTEGRAL TT or INTEGRAL pH1 pipes

5 MOUNT THE BOLTS

Mount the two bolts with their compressed plastic rings in the holes.

Branches for sewage pipes round hole
 Swivel saddle branches

6 POSITION THE GASKET

Position the gasket according to the type of joint (see diagrams A and B).

Check that the gasket is properly seated.
Lubricate the gasket.

Unmount the branch so that the plate can first be fitted.

(7) ASSEMBLE

Mount the fully assembled iron part with a single bolt.
Place a washer and nut on the bolt, but without tightening.
Finish mounting the iron part. If necessary, use a wooden lever to avoid damaging the coating. Gradually apply increasing pressure and avoid jerky movements.

8 TIGHTEN

Add the second bolt.

Tighten both nuts with a size 17 spanner.

Hold the bolt by means of the flat sections at the end of the bolt (size 7 spanner).

Branches for sewage pipes round hole Swivel saddle branches

9 ASSEMBLE

Re-mount the upper elements.
Turn the assembly towards its connection position and hold in place.
Fit and tighten the stirrups.

Hole saws that are suitable for iron are sold by PAM.

DN	б bore (mm)	reference
$\mathbf{1 5 0}$	172	111173
$\mathbf{2 0 0}$	232	111174

Branches for sewage pipes rectangular hole Swivel saddle branches

The contractor is responsible for analyzing and eliminating any risks during installation (especially the use of personal protective equipment).

(1) DRAW

Draw the centerline at the top of the pipe using an angle bar.
Using the template provided, draw the following on the pipe barrel.
Position the template provided on the top centerline using the two markings indicated.

(2) CUT AND CLEAN

Using a disc cutter, cut the rectangular opening in the pipe barrel on the inside of the line.
Comply with the centerline of the pipe shown on the cutting template.
Use a multi-material cutting disc.
Avoid cutting over the line in the corners.
Using a cloth, clean the part of the pipe barrel to which the plate will be mounted, as well as the inside of the pipe and the face to be re-coated.

3 REPAIR

Repair the coating on the exposed part of the pipe after cutting by applying fast-drying epoxy paint with a paintbrush.
If necessary, repair the lining.
Product used: ISOLARM protective paste (ref. 179099)

(4) ASSEMBLE

Unmount the branch so that the plate can first be fitted.
Fit the gasket in the housing on the internal face of the plate.

Branches for sewage pipes rectangular hole Swivel saddle branches

Lubricate the joint once seated in its housing. Fit the plate to the pipe barrel.
Start assembly in the middle of each straight section and progressively fit by hand. Use a mallet if necessary.

Gradually tighten the bolts, alternating on both sides until the saddle is perfectly in contact with the pipe barrel.
Re-mount the upper elements.
Turn the assembly towards its connection position and hold in place.
Fit and tighten the stirrups.

Watch our tutorials and subscribe to our channel:

Blutop / Blutop Vi / Topaz / Topaz Vi joint link to Blutop installation guide playlist

Standard joint / Standard Vi / ViLoK joint

 link to Natural installation guide playlistAnchored joints / Assembly / Dismantling link to 3D anchoring demo playlist

[^0]: ϕ : soil internal friction angle
 γ : soil density
 (standard geotechnical data)

